
MiSo: A DSL for Robust and Efficient Solve and Minimize Problems
FEDERICO SICHETTI, Università di Genova, Italy
ENRICO PUPPO, Università di Genova, Italy
ZIZHOU HUANG, New York University, United States
MARCO ATTENE, CNR IMATI, Italy
DENIS ZORIN, New York University, United States
DANIELE PANOZZO, New York University, United States

Fig. 1. A MiSo specification is a Python script that translates a Solve or Minimize problem described in terms of its constraints and objective function. The
MiSo compiler generates optimized C++ code for resolving the specific problem, relying on generic solvers based on interval analysis that provide conservative
results. We apply MiSo to several geometric problems, obtaining competitive performance compared to hand-optimized code.

Many problems in computer graphics can be formulated as finding the
global minimum of a function subject to a set of non-linear constraints
(Minimize), or finding all solutions of a system of non-linear constraints
(Solve). We introduce MiSo, a domain-specific language and compiler for
generating efficient C++ code for low-dimensional Minimize and Solve
problems, that uses interval methods to guarantee conservative results while
using floating point arithmetic. We demonstrate that MiSo-generated code
shows competitive performance compared to hand-optimized codes for
several computer graphics problems, including high-order collision detection
with non-linear trajectories, surface-surface intersection, and geometrical
validity checks for finite element simulation.

Authors’ addresses: Federico Sichetti, Università di Genova, Italy, federico.sichetti@
edu.unige.it; Enrico Puppo, Università di Genova, Italy, enrico.puppo@unige.it; Zizhou
Huang, New York University, United States, zizhou@nyu.edu; Marco Attene, CNR
IMATI, Italy, jaiko@ge.imati.cnr.it; Denis Zorin, New York University, United States,
dzorin@cs.nyu.edu; Daniele Panozzo, New York University, United States, panozzo@
nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2025/8-ART
https://doi.org/10.1145/3731207

ACM Reference Format:
Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin,
and Daniele Panozzo. 2025. MiSo: A DSL for Robust and Efficient Solve
and Minimize Problems. ACM Trans. Graph. 44, 4 (August 2025), 18 pages.
https://doi.org/10.1145/3731207

1 INTRODUCTION
Non-linear constraint solving is fundamental to graphics and scien-
tific computing, with applications ranging from collision detection
and minimal distance computation to element inversion and Boolean
operations. A vast literature addresses this topic (Section 2). For
example, [Akenine-Möller et al. 2018; Akenine-Möller et al. 2024]
summarize methods for static collision detection between proxies,
referencing over 100 algorithms tailored to different primitive pairs
and accuracy/efficiency trade-offs. Similar per-primitive-pair spe-
cialization is required for minimal distance queries and, likewise,
each finite element (FE) type and order necessitates custom code for
positive Jacobian checks. This complexity doubles when considering
time-dependent scenarios.

While real-time applications often restrict primitives to boxes due
to limited computational resources, high-fidelity simulations may re-
quire conservative, high-accuracy predicates [Snyder 1992]. Testing
the correctness and ensuring the efficient, accurate implementation
of these algorithms is a major challenge [Wang et al. 2021]. The

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0003-2805-306X
HTTPS://ORCID.ORG/0000-0001-9780-5283
HTTPS://ORCID.ORG/0009-0007-6529-4694
HTTPS://ORCID.ORG/0000-0002-9012-7245
HTTPS://ORCID.ORG/0000-0001-7733-5501
HTTPS://ORCID.ORG/0000-0003-1183-2454
https://orcid.org/0000-0003-2805-306X
https://orcid.org/0000-0001-9780-5283
https://orcid.org/0009-0007-6529-4694
https://orcid.org/0009-0007-6529-4694
https://orcid.org/0000-0002-9012-7245
https://orcid.org/0000-0001-7733-5501
https://orcid.org/0000-0003-1183-2454
https://doi.org/10.1145/3731207
https://doi.org/10.1145/3731207

2 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

difficulty of generalizing theoretical improvements across differ-
ent cases hinders progress in this pervasive and crucial family of
algorithms, essential to modern computing.

In contrast to algorithm specialization, Snyder [1992] proposed
a general framework, based on interval analysis, for conservative
solutions to high-order constrained optimization. This framework
offers two algorithms: Solve, which finds all solutions to a non-
linear constraint system, and Minimize, which finds the constrained
global minimum of a function. For Solve, the conservative algo-
rithm returns a region guaranteed to contain all solutions (if any),
potentially including points near the feasible domain. For Mini-
mize, it returns a value less than or equal to the true minimum and
within a bounded distance of it. In both cases, this conservativeness
accounts for numerical rounding errors.

Although often considered slower than methods like Newton’s
minimization, recent work [Chen et al. 2024; Wang et al. 2021]
demonstrates the effectiveness and relative efficiency of this conser-
vative approach, particularly when seeking guaranteed solutions.

Snyder’s approach uses Natural Interval Extensions (NIE) to com-
pute inclusion functions (Section 4.2) that bound function ranges
over domains, by composition of interval operators (Appendix C).
Although general, NIE’s convergence to the true range via domain
decomposition can be slow. For the common case of polynomials,
tighter bounds are achievable via their Bézier representation [Johnen
et al. 2013; Lengagne et al. 2020; Stahl 1995]. However, Bézier repre-
sentation can be computationally expensive for polynomials with
many terms.

We employ a hybrid approach, blending Bézier inclusion func-
tions and NIE. Decomposing polynomial expressions into simpler
forms (fewer variables or lower degree) allows us to construct a
spectrum of inclusion functions that ranges from fully NIE-based
(expanded expressions) to fully Bézier-based (collapsed expressions).
Hybrid solutions can dramatically improve efficiency. For example,
our hybrid solver for continuous collision detection between high-
order polynomial patches is orders of magnitude faster than purely
NIE-based and purely Bézier-based solutions (Section 6).

We developed MiSo on top of such a hybrid approach. MiSo is
a Python-based domain-specific language (DSL) for the specifica-
tion of Solve and Minimize problems. MiSo enables the user to
quickly explore possible hybrid approaches by changing a few lines
of code. From a simple specification, the MiSo compiler produces a
numerically robust C++ solver for the given problem, automatically
generating all the necessary representations of the functions in-
volved, the related transformations required for domain subdivision,
and the evaluation of inclusion functions.

Domain decomposition and interval arithmetic are used to guar-
antee conservative results. Setting a compile-time flag switches to
a faster, non-conservative computation mode based on standard
floating-point arithmetic. A known limitation of subdivision-based
methods is that they suffer from a curse of dimensionality; hence,
our method may become impractical for problems in many dimen-
sions. However, we show that we are able to achieve competitive
performance for a number of fundamental geometric problems, es-
pecially those involving high-order geometry.

We demonstrate competitive performance against hand-optimized
code for key computer graphics problems, including linear and high-
order continuous collision detection, and finite element validity
checks.

MiSo is available as an open-source project at www.dummy.url.

2 RELATED WORK
We survey general methods for solving non-linear constraint sys-
tems, deferring application-specific comparisons to Section 6. We
conclude with a survey of domain-specific languages for other graph-
ics applications.

2.1 Explicit Root Finding
Algebraic. Computer Algebra Systems [Meurer et al. 2017; Mona-

gan et al. 2005; Wolfram Research, Inc. 2023] provide solvers that use
algebraic manipulation to find explicit expressions for the roots of
non-linear systems. Unfortunately, they are computationally expen-
sive and limited to small systems: as an example, Wang et al. [2021]
use them for computing a ground truth result for the problem of
CCD and reports a running time in the order of seconds per query.

One case of particular interest is the problem of finding the roots
of univariate quadratic or cubic polynomials. In these cases, a closed-
form expression for the roots is known, and it has been used for
dynamic inversion tests [Smith and Schaefer 2015] and for collision
detection [Hadap et al. 2004]. Evaluating the closed-form expression
with floating point arithmetic, while efficient, is unstable and might
lead to incorrect roots [Wang et al. 2021].

Numerical. A popular option is to use numerical methods for
constrained optimization (Minimize) and root finding (Solve). [No-
cedal and Wright 2006]. These methods are very popular in graphics
[Hadap et al. 2004] due to their efficiency and ease of control of
accuracy. A major limitation of many approaches in this class is
that they must be implemented in floating-point arithmetic, thus
possibly computing an incorrect result.

While many use "small" numerical tolerances to mitigate this
issue [Akenine-Möller et al. 2018; Chen et al. 2024; Li et al. 2021b],
this heuristic does not guarantee correctness. Although forward
error analysis can derive conservative tolerances [Wang 2014], these
often lead to excessive false positives [Wang et al. 2021].

Robust interval versions of Newton’s method [Hansen and Green-
berg 1983; Stahl 1995] can bound zero loci for continuously differen-
tiable functions, but they cannot handle non-differentiable operators
such as abs, max, and min.

Counting. Brochu et al. [2012] reduce root parity counting to a
geometric intersection problem solvable with custom numerical
predicates [Wang et al. 2022]. This approach, however, is limited
to determining root parity (even or odd) and requires deriving a
specific predicate for each constraint set. Tang et al. [2014] pro-
posed a Bernstein sign classification method for CCD. However,
conservative implementation is challenging, and [Wang et al. 2021]
presented a counterexample showing its failure to detect a collision.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

www.dummy.url

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 3

2.2 Sum Of Squares Polynomials
Marschner et al. [2021] proposed reducing non-linear constraint
solving to semidefinite programs, an approach also used for high-
order patch collision detection [Zhang et al. 2023] and hexahe-
dral mesh inversion repair [Marschner et al. 2020a]. However, this
method is computationally costly and, like other numerical root-
finders, provides only approximate solutions due to numerical pre-
cision. We compare against an SOS algorithm for collision detection
in Section 6.

2.3 Inclusion-Based
A robust and generic solution has been pioneered for geometric
modeling applications by John Snyder in his PhD thesis [Snyder
1991, 1992; Snyder et al. 1993]. The idea is to adaptively partition
the domain using an inclusion function for guidance. An inclusion
function for a function 𝑓 defined on a domain 𝐷 returns a set enclos-
ing the range of 𝑓 on 𝐷 . An inclusion function can be used to check
if the domain contains a root, does not contain a root, or might con-
tain a root: in the latter case, refining and evaluating the inclusions
on its subdomains provides an effective algorithm to detect and
isolate roots. These approaches are widely used in computational
geometry [Hormann et al. 2021, 2023], in path planning [Zhang et al.
2024], and for more generally isolating polynomial roots [Collins
and Akritas 1976].

Interval Arithmetic. Snyder [Snyder 1992] proposes using interval
arithmetic to build inclusion functions in a generic and automatic
way. However, his construction often results in overly pessimistic
inclusions that increase the overall computational cost of the search
algorithms. Applications include surface intersection, closest point
queries, and other operations needed in a geometric modeling kernel.
Interval methods have also found use in robotics and control [Jaulin
et al. 2002; Merlet 2007]. The high computational cost is likely why
these approaches have not found wide application in graphics until
recently: Wang et al. [2021] benchmarked this approach against a
numerical root finder for collision detection and found it on average
~4 orders of magnitude slower.

Floating Point. Ad-hoc inclusion functions can be built without
the use of interval arithmetic [Garloff et al. 2003; Stahl 1995]. Johnen
et al. [2014] and Chen et al. [2024] propose to build inclusion func-
tions directly from the control points of Bezier polynomials for
checking element validity and for high-order continuous collision
detection, respectively. In both cases, the algorithms are very effi-
cient and comparable to the numerical root-finding algorithms, but,
unfortunately, they both suffer from numerical rounding issues. We
use a similar approach to build our inclusion functions (Section 5.3).

Rational Grid Search. For the special case of minimizing polyno-
mial functions over a standard simplex, there are theoretical bounds
for the approximation error of a rational grid search [De Klerk et al.
2006, 2014, 2017]. These results could be used to construct inclusion
functions for this special case, but we are not aware of any algorithm
using them.

Predicates. Wang et al. [2021] propose a custom inclusion function
for the continuous collision detection between triangles over lin-
ear trajectories. Similarly to the predicates proposed in [Shewchuk
1997], an exact predicate to check if the range of the inclusion
function contains a zero is introduced, thus proposing an efficient
and conservative algorithm. Deriving such a predicate is, however,
problem-dependent: while there are tools that automate the most te-
dious part of deriving a floating point filter [Attene 2020; Lévy 2016;
Meyer and Pion 2008], this is still an error-prone and labor-intensive
task.

2.4 DSL in Graphics
Multiple domain specific languages have been introduced in graph-
ics, which can be broadly divided into two categories.

Convenience and Correctness. A DSL is introduced to automate
code generation for repetitive yet challenging tasks that are tedious
and difficult to perform correctly by hand. A prominent example is
CVX [CVX Research, Inc. 2012; Grant and Boyd 2008], providing
an effective way to solve convex optimization problems and au-
tomating the generation of problem-specific code from a high-level
specification. Li et al. [2021a] propose a method to automatically
generate LATEX and source code for linear algebra. Li et al. [2024]
introduce a DSL for mesh processing, allowing a direct and intuitive
description of geometry processing algorithms.

The two works closer to our contribution are [Meyer and Pion
2008] and [Lévy 2016], which analyze expression trees to generate
the C++ code of corresponding filtered predicates.

Efficiency. Another family of DSL is introduced to improve per-
formance of core algorithmic blocks. These include DSL for sparse
linear algebra such as SIMIT [Kjolstad et al. 2016], TACO [Kjolstad
et al. 2017], EGGS [Herholz et al. 2022; Tang et al. 2020] and for
optimizing entire simulation algorithms [Bernstein and Kjolstad
2016], for example TAICHI [Hu et al. 2019].

Our DSL. MiSo is mainly targeting the first goal: automatically
convert a high-level specification of Solve or Minimize into a re-
liable and conservative C++ code. However, our code generator
unrolls many computations, favoring compiler optimizations. We
observed that our generated code has comparable performance to
hand-tuned implementations for specific instances commonly found
in graphics (Section 6).

3 OVERVIEW
We begin by formally characterizing the class of addressable prob-
lems, followed by a broad description of MiSo’s operation and a
working example. Technical details are provided in Sections 4 and 5.

3.1 Problem statement
We transition from a continuous formulation of the problems to
their discrete numerical counterparts, discussing the choices and
limitations inherent in this process.

Definition 1 (Solve Problem). A Solve Problem is defined by:

a) A domain Σ that is the Cartesian product of standard simplices,

possibly of different dimensions;

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

Table 1. A list of common problems that can be addressed with MiSo. From the left: name of the problem; domain; coordinates on the domain; objective
function; constraint. The symbol 𝜎 represents a generic Cartesian product of standard simplices, which is the parametric space of a geometric primitive; the
domains of different elements are denoted with subscripts; a repeated symbol refers to the same domain considered more than once. The symbols 𝜉 and 𝜂

represent tuples of coordinates referring to the related factors in the Cartesian product; 𝑡 is a scalar coordinate; the symbols 𝜉1, 𝜉2 refer to tuples of coordinates
representing two distinct points in the same domain. The symbol 𝑥 , possibly with subscripts, represents a geometric map from a parametric space into physical
space; 𝐽𝑥 is its Jacobian; likewise, 𝑥 represents a time-dependent geometric map. The symbols 𝐷𝑖 represent the SDF of an implicitly defined primitive.

Problem Algorithm Domain Σ Coordinates Objective 𝐹 Constraint 𝐶 (≤ 0)
Geometric Validity Solve 𝜎 𝜉 - |𝐽𝑥 (𝜉) |

Continuous Collision Detection Minimize 𝜎1 × 𝜎2 × [0, 1] (𝜉, 𝜂, 𝑡) 𝑡 𝑑 (𝑥1 (𝜉, 𝑡), 𝑥2 (𝜂, 𝑡))
Parametric Primitive Intersection Solve 𝜎1 × 𝜎2 (𝜉, 𝜂) - 𝑑 (𝑥1 (𝜉), 𝑥2 (𝜂))

Minimal Distance Minimize 𝜎1 × 𝜎2 (𝜉, 𝜂) 𝑑 (𝑥1 (𝜉), 𝑥2 (𝜂)) -
Diameter of Primitive Minimize 𝜎 × 𝜎 (𝜉1, 𝜉2) −𝑑 (𝑥 (𝜉1), 𝑥 (𝜉2)) -
Boolean Intersection Solve [0, 1]𝑛 𝜉 - max(𝐷1 (𝜉), 𝐷2 (𝜉))

Boolean Union Solve [0, 1]𝑛 𝜉 - min(𝐷1 (𝜉), 𝐷2 (𝜉))
Boolean Difference Solve [0, 1]𝑛 𝜉 - max(𝐷1 (𝜉),−𝐷2 (𝜉))

b) A system of constraints, consisting of inequalities of the type

𝐶𝑖 (𝜉) ≤ 0 with 𝜉 ∈ Σ for 𝑖 = 1, . . . , 𝑘 , where all 𝐶𝑖 ’s are

continuous scalar functions. Any equality constraint 𝐶𝑖 (𝜉) = 0
is represented as |𝐶𝑖 (𝜉) | ≤ 0.

The problem asks to find the region Φ ⊆ Σ satisfying the constraints,

called the feasible region.

Definition 2 (Minimize Problem). A Minimize Problem is de-

fined by:

a) and b) as in Definition 1;

c) A continuous scalar objective function 𝐹 (𝜉) defined on Σ.

The problem asks to find the minimum 𝐹 ∗ of 𝐹 within the feasible
region Φ.

Table 1 shows a few relevant geometric problems that fit our
framework. Some Minimize problems are unconstrained, meaning
their feasible region is the whole domain Σ.

The domain Σ is chosen to facilitate modeling geometric problems.
Although products of unit intervals provide compact subsets of
Cartesian space, higher-dimensional simplicial domains are better
suited for representing geometric elements. While compact domains
theoretically limit support for unbounded primitives (e.g., rays or
planes), this is rarely a practical concern, as bounded approximations
suffice. See Section 4.1 for details.

We address numerical versions of the above problems and seek
a conservative solution. This means that, even when an exact so-
lution cannot be found numerically, we return a solution, which is
guaranteed to be within a certain threshold from the ground truth.
This is formally stated in the following definitions.

Definition 3 (𝜀-Solve Problem). An 𝜀-Solve Problem is defined

by the same elements of a Solve Problem, plus:

c) An array of thresholds 𝜀𝑖 > 0 for 𝑖 = 1, . . . , 𝑘 .

Let Φ𝜀 ⊆ Σ be the region satisfying 𝐶𝑖 (𝜉) ≤ 𝜀𝑖 for all 𝑖 = 1, . . . , 𝑘 ,

called the buffer region. A solution to the problem is any region Φ̃
such that

Φ ⊆ Φ̃ ⊆ Φ𝜀

where Φ is the solution to the corresponding Solve Problem.

Fig. 2. Regions defining a solution for 𝜀-Solve Problems on a domain [0, 1] ×
[0, 1] with an inequality constraint (Left) and an equality constraint (Right).
Left: the blue-shaded region below the blue line is the solution Φ of the
corresponding Solve Problem in the continuum; the region Φ𝜀 extends
between the blue and green lines providing a buffer in which the numerical
solution is sought; the grey-shaded region below the black polyline is a
possible solution Φ̃. Right: Φ consists just of the blue line; a solution Φ̃ is
the grey-shaded region enclosed between the two black polylines.

In the following, most examples involve just one constraint equa-
tion: in that case, we drop the subscript on 𝐶 and 𝜀, for simplicity.

Figure 2 depicts the relation between regions Φ, Φ̃ and Φ𝜀 . The
region Φ̃ found by our solver consists of subdomains of the same
shape as domain Σ, obtained by domain subdivision, hence the
staircase shape in the figure.

Definition 4 (𝜀, 𝛿-Minimize Problem). An 𝜀, 𝛿-Minimize Prob-
lem is defined by the same elements of a Minimize Problem, plus:

d) Thresholds 𝜀 ≥ 0 for 𝑖 = 1, . . . , 𝑘 and 𝛿 > 0.

A solution to the problem is any interval 𝐹 ∗ with a width ≤ 𝛿 such

that:

• the lower end of 𝐹 ∗ is less or equal to the minimum 𝐹 ∗ of 𝐹 on

the feasible region Φ;

• the upper end of 𝐹 ∗ is greater or equal to the minimum 𝐹 ∗𝜀 of 𝐹

on the buffer region Φ𝜀 .

Figure 3 shows an example of an 𝜀, 𝛿-Minimize problem in 2D: the
(first) intersection between an oriented line segment and a curve.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 5

Fig. 3. An 𝜀, 𝛿-Minimize Problem: the first intersection between the black
segment and the blue line is sought. The segment starts at the black bullet.
The blue bullet corresponds to solution 𝐹 ∗ of the corresponding Minimiza-
tion Problem in the continuum. The green bullet corresponds to the solution
for region Φ𝜀 , whose image is the green area. The red segments in the blow-
ups to the right correspond to possible intervals 𝐹 ∗ returned as numerical
solutions. Their lower ends are guaranteed to lie below the blue bullet and
their upper ends are guaranteed to lie beyond the green bullet. The different
configurations arise from the interplay between the values of 𝜀 and 𝛿 : as
𝜀 tends to zero, the upper left configuration becomes more frequent; as 𝛿
tends to zero, the lower right configuration becomes more frequent.

Remark 1. We note that the solution of the 𝜀, 𝛿-Minimize prob-
lem might not contain the solution of the corresponding Minimize
problem when 𝜀 > 0. In our case, we approach the problem numer-
ically, so an intrinsic difficulty arises when considering equality
constraints - it is impossible to guarantee that a subregion 𝜎 ⊂ Σ
contains 0, because we cannot compute the exact range of 𝐹 on 𝜎 in
general. Furthermore, with finite precision arithmetic, it is impossi-
ble to verify that a single point 𝑃 satisfies the equality constraint
in general. Therefore, the Minimize problem of Definition 2 does
not always admit a numerical solution. However, it is possible to
certify, via conservative computations, that 𝜎 does not intersect Φ,
and that 𝑃 does not lie in Φ.

For these reasons, we are always able to guarantee that the lower
bound of 𝐹 ∗ bounds 𝐹 ∗ from below, but we can only bound it from
above when Φ does not have zero measure in Σ. Setting 𝜀 > 0 in
such cases constitutes a meaningful approximation of the equality-
constrained problem.

The common practice in the state of the art is to simply solve
the relaxed problem without equality constraints, i.e., with Φ ≡ Φ𝜀 .
Compared to this approach, we offer the same bound from above
and a tighter bound from below.

Remark 2. We prescribe thresholds on precision in the range of the
functions𝐶𝑖 and 𝐹 , rather than the more common practice of setting
thresholds in their domain Σ. While slightly more complex, this
approach allows for greater flexibility and improved error control.

As detailed in Section 5.5, our implementations of Solve and
Minimize are readily adaptable to specific application requirements,
and managing precision in parameter space only requires modifying
a few lines of code. We refer to Appendix A for a more thorough
discussion of this choice.

Remark 3. The algorithms presented in Section 4 to resolve the
numerical problems produce conservative results even if the con-
straint functions 𝐶𝑖 and the objective function 𝐹 are discontinuous,
but they may fail to provide a result within the required thresholds

𝜀, 𝛿 . The treatment of non-continuous functions is a subtle issue in
floating-point: since a function 𝑓 can be only sampled at finitely
many points and evaluated up to a finite precision, all disconti-
nuities between adjacent samples can be filled with steep ramps,
making the function virtually continuous. See Appendix B for a
more thorough discussion.

3.2 How MiSo Works
MiSo is used to specify a problem in the classes given in Definitions 3
and 4 and automatically generate a solver for such a problem.

All solvers produced by MiSo are instances of two generic solvers,
which rely on interval analysis [Snyder 1992]: they evaluate the
inclusion functions of the constraint and objective functions over
sub-domains of Σ, and perform space decomposition to converge to
the solution.

A MiSo specification consists of a Python script that translates the
mathematical specification of an 𝜀-Solve or 𝜀, 𝛿-Minimize Problem
into C++ functions. These functions take problem-specific parame-
ters – (C, 𝜀) for 𝜀-Solve and (C, 𝐹 , 𝜀, 𝛿) for 𝜀, 𝛿-Minimize, where C
denotes the collection of𝐶𝑖 ’s – and return the problem solution. The
solution to an 𝜀-Solve problem is a collection of non-intersecting
sub-domains of Σ, resulting from recursive subdivisions, whose
union forms the region Φ̃. The output of an 𝜀, 𝛿-Minimize problem
is an interval 𝐹 ∗ defined by two floating-point values.

We provide two backends for our code generator: (1) one pri-
oritizing correctness, employing rounded interval arithmetic to
guarantee a conservative answer, and (2) one prioritizing efficiency,
which performs computations with standard floating point arith-
metic whenever possible. The former is 2-3 times slower on average
but provides provably conservative results, which is a useful feature
for certain problems such as collision detection. The choice of the
backend is a compilation flag, and the specifications need not be
modified (Section 5.5).

3.3 Didactic Example: Line-Surface Intersection
We consider the problem of finding the intersections between a
cubic triangle patch and a segment, both given in parametric form
and show how it can be solved using our method. Other instances
of this problem, involving other types of surfaces and/or curved
trajectories, will be discussed in Section 6.

The mathematical specification of the problem can be given as
follows:

a) The domain is Σ = △2 ×△1 where: △2 is the two-dimensional
standard simplex, used as the parametric domain of a cubic
triangle; and △1 is the unit interval, used as the parametric
domain of a straight-line segment. Σ is a triangular prism and
its coordinates are (𝑢, 𝑣, 𝑡).

b) Let 𝑆2,3 : △2 −→ R3 and 𝑟1,1 : △1 −→ R3 be the parametriza-
tions of a generic cubic triangular patch and a generic seg-
ment, respectively. We define

𝐶 (𝑢, 𝑣, 𝑡) = ∥𝑆2,3 (𝑢, 𝑣) − 𝑟1,1 (𝑡)∥22
the 𝐿2 distance between a generic point of the triangular patch
and a generic point of the segment. The problem’s constraint
is defined by 𝐶 (𝑢, 𝑣, 𝑡) ≤ 0.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

c) The objective function is 𝐹 (𝑢, 𝑣, 𝑡) = 𝑡 , whose minimum 𝑡∗

gives the first point 𝑟1,1 (𝑡∗) along the oriented segment to
intersect the patch.

d) The precision thresholds for the numerical problem are values
𝜀 > 0 and 𝛿 > 0.

Figure 4 depicts the setting of the problem in physical space,
the domain Σ, and its solution in the continuum. In the numerical
version, each possible intersection point consists of a region of
physical space containing that point; likewise, its inverse image
in the prism will be a volume and the sought solution will be an
interval (upright segment in the prism) stabbing such a volume.

Figure 5 contains a MiSo specification of the problem together
with some results of the corresponding Solve problem.

MiSo is implemented as a Python library called pymiso. All MiSo
code must be placed within a pymiso.Context object, created at line
1 using Python’s with construct and assigned a name; all subsequent
MiSo calls are done from this object.

In Line 2, the two parameters from the triangle’s parametric
domain are created and assigned to X. Because they are part of the
same simplex (thus their sum is constrained to be less than 1), they
must be declared together. Similarly, Line 3 declares a third variable
that is assigned to T, representing the ray’s parameter. This describes
the optimization domain’s triangular prism shape.

In Line 4, the geometric map of the ray is defined. The function
miso.poly_space creates an object that represents the space of
polynomials of degree 1 in T. The parameters of this function are
enclosed in a Python tuple, as poly_space can accept multiple
variable-order pairs. Then the class method geo_map defines the
geometric map of the corresponding element in the given basis
(LAGRANGE in this case) and embedding dimension (3 in this case,
so the codomain of this function is R3), implicitly declaring the
arguments for the control points. Line 5 analogously defines the
geometric map of the two-dimensional triangle patch.

Fig. 4. Intersection between a straight-line segment and a cubic triangular
patch. Left: in physical space, the origin of the segment is to the bottom
left; the red bullets are the Lagrange control points defining the patch; the
Minimize Problem seeks the first (leftmost) of the two intersections (blue
bullets). Center: the problem domain Σ is an upright triangular prism; the
blue bullets are the inverse images of the intersections in the left image
and give the solution of the Solve Problem; the𝑇 (blue) coordinate of the
lowest of the two points is the solution of the Minimize Problem. Right: the
𝜀-Solve Problem returns two tiny volumes enclosing the blue bullets; the
𝜀, 𝛿-Minimize Problem returns an interval spanning the𝑇 coordinate of the
lower-left blue bullet.

1 with pymiso.Context () as miso:

2 X = miso.variables (2) #declare variables

3 T = miso.variables (1)

4 line = miso.poly_space ((T, 1)).geo_map(miso.bases.LAGRANGE , 3) #geometric

maps

5 patch = miso.poly_space ((X, 3)).geo_map(miso.bases.LAGRANGE , 3)

6 dist = ((line -patch)**2).sum() #compute the distance function

7 miso.generate('./src/generated ', 'RayPatch ', dist , objective=T) #generate

code

Fig. 5. Cubic triangle - linear segment intersection. From the top: MiSo
specification of the problem; Intersecting geometries for 1, 2, 3 intersecting
points; Corresponding solutions of the Solve problem in parametric space
are clusters of prisms. The value of 𝜀 is much larger than the value used in
the experiments in Section 6 to produce visible results.

Line 6 defines the squared distance between the two primitives.
Because line and patch are vectors, the difference and power op-
erators are automatically applied component-wise. The final sum
operation gathers the elements of the vector by summing them. The
result is the only constraint function for this problem. Note that the
threshold 𝜀 is not given in the specification, but rather set later by
the user when calling the solver.

Finally, Line 7 generates the C++ code in the specified folder as a
class named RayPatch that contains all the machinery to evaluate
the inclusion functions of the constraints and the objective, and to
perform domain subdivision.

This class is used to instantiate the specific solver from a generic
templated solver minimize
RealInterval minimize <T>(T cps , vector <double > eps , double delta);

which is called
F_star = minimize <RayPatch >({Rx, Ry, Rz, Tx, Ty, Tz}, {e}, d);

where Rx, Ry, Rz contains the coordinates of the two control
points defining the ray, Tx, Ty, Tz contain the coordinates of
each of the 10 control points defining the triangular patch, and e
and d specify the precision thresholds. The corresponding 𝜀-Solve
problem, which seeks all the intersections between ray and surface
patch, is easily obtained by instantiating solve instead of minimize,
requiring no changes to the specification code:
RealInterval solve <T>(T cps , vector <double > eps);

which is called
F_star = solve <RayPatch >({Rx, Ry, Rz, Tx, Ty, Tz}, {e});

where parameters have the same meaning as above. The output
of this function is a collection of domains of the same type of Σ,
whose union forms Φ̃.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 7

Fig. 6. Subdivision rules for simplices of dimension 1, 2, 3, and for a com-
posite space △2 × △1.

The class RayPatch provides the data to compute the spatial
extent of each such (sub)domain – a convex polyhedron – and the
code to evaluate the constraint and objective functions inside it.

4 ALGORITHMS
The generic algorithms Solve and Minimize are based on inter-
val analysis and inspired by those originally described by Snyder
[1992]. They need to evaluate the inclusion functions of their input
functions and subdivide their domain to narrow the search. We
describe the class of domains we address and their subdivision; next
we define the inclusion functions in general; and finally, we present
the algorithms.

4.1 Problem Domain and Decomposition
The problem domain is Σ = △𝑛1 × · · · ×△𝑛𝑠 the Cartesian product of
𝑛𝑖 dimensional standard simplices. The signature of Σ is (𝑛1, . . . , 𝑛𝑠).

A decomposition scheme for a domain 𝜎 ⊆ Σ is a list of affine
transformations

𝜓𝑞 : 𝜎 → 𝜎 𝑞 = 1, . . . , 𝑄

that determine how 𝜎 is subdivided, where 𝑄 is the number of
subdomains after decomposition. In practice, each𝜓𝑞 maps 𝜎 onto
a subset that has the same shape, and we have

⋃𝑄

𝑞=1𝜓
𝑞 (𝜎) = 𝜎

and 𝜓𝑞 (𝜎) ∩𝜓𝑞′ (𝜎) has measure zero in 𝜎 for all 𝑞 ≠ 𝑞′, i.e., two
sub-domains can at most share boundaries.

We currently support bisection for the unit interval △1, quadri-
section for the triangle △2, and decomposition of a tetrahedron △3
into eight tetrahedra (Figure 6). The decomposition of a composite
space Σ = △𝑛1 × · · · × △𝑛𝑠 is performed by applying the related
decomposition schemes to all the factors in the Cartesian product.

For instance: if 𝑛𝑖 = 1 at all 𝑖 , i.e., Σ is a hypercube, then the
composite scheme is the standard bisection along all coordinates;
the scheme for a prism △2 × △1 is depicted in Figure 6.

Given Σ with signature (𝑛1, . . . , 𝑛𝑠), where 𝑛𝑖 ≤ 3 for all 𝑖 , the re-
lated subdivision scheme is generated automatically by our system.

4.2 Inclusion Functions
Given a function 𝑓 : Ω −→ 𝑌 , an inclusion function for 𝑓 is any
function

□𝑓 : PΩ −→ P𝑌
such that for any 𝐷 ⊆ Ω we have 𝑓 (𝐷) ⊆ □𝑓 (𝐷), where P denotes
the power set. Here, we consider the specific case of scalar functions
and inclusion functions that return an interval.

Let I be the space of intervals on the real line. For 𝑎 = [𝑎, 𝑎] ∈ I, let
us define𝑤 (𝑎) = 𝑎−𝑎 the width of interval 𝑎. Let𝐴 = 𝑎1×· · ·×𝑎𝑛 ∈

I𝑛 be a 𝑛-dimensional interval; we extend the definition of width as
𝑤 (𝐴) = max𝑛

𝑗=1𝑤 (𝑎 𝑗). Given 𝐷 ⊆ R𝑛 compact, we further extend
the definition of width as𝑤 (𝐷) = min𝐴⊇𝐷 𝑤 (𝐴) with 𝐴 ∈ I𝑛 .

Let 𝑓 : Σ ⊆ R𝑛 −→ R be a real function. We define an (interval)
inclusion function for 𝑓 as □𝑓 : PΣ −→ I such that, for any 𝐷 ⊆ Σ
we have ∀𝜉 ∈ 𝐷 𝑓 (𝜉) ∈ □𝑓 (𝐷).

Definition 5 (Convergent inclusion function). We say □𝑓
to be convergent if for any 𝐷 ⊆ Σ

𝑤 (𝐷) → 0⇒ 𝑤 (□𝑓 (𝐷)) → 0.

In particular, if 𝐷 shrinks about 𝜉 , then □𝑓 (𝐷) shrinks about 𝑓 (𝜉).

A convergent inclusion function can be used to find a root of
a function 𝑓 by subdividing the initial domain Σ until it becomes
sufficiently small [Snyder 1992].

Given an expression of a function 𝑓 , our system automatically
generates an inclusion function for 𝑓 using interval arithmetic [At-
tene 2020]. Refer to Section 5.2 for a list of currently supported
expressions.

4.3 Pseudocode
We describe the main structure of our generic solvers Solve and
Minimize. Their programming interfaces follow from the problem
statements of Definitions 3 and 4.

For conciseness, we provide descriptions and pseudo-code by
assuming a single constraint function 𝐶 and threshold 𝜀. In the real
version dealing with systems of constraints, it is implicitly assumed
that any comparison of 𝐶 against 𝜀 is substituted with the Boolean
∧ conjunction of each 𝐶𝑖 against 𝜀𝑖 .

Solve. Algorithm Solve takes as input the problem domain Σ,
the constraint function 𝐶 , the precision value 𝜀, plus two optional
parameters: a Boolean FindOne to indicate whether just one feasible
point or the whole feasible region is sought, and an integer 𝐾max to
manage early termination. If FindOne is false (default), it returns a
list of non-overlapping regions that cover the entire feasible region
Φ and is contained in the buffer region Φ𝜀 ; otherwise, it returns the
first point/region that satisfies the constraint.

The pseudo-code is given in Algorithm 1. The algorithm uses a
queue 𝐿 of subdomains, initially empty, to store subdomains that
potentially intersect the boundary of the buffer region Φ𝜀 , and re-
quire further subdivision. The algorithm starts by processing the
whole domain Σ with the function ProcessRegion. This function
distinguishes three cases, depending on the relation between the
inclusion function of 𝐶 over the considered region 𝜌 and the buffer
region Φ𝜀 : if it lies completely outside Φ, then 𝜌 is discarded; 𝜌 po-

tentially intersects Φ and lies completely inside Φ𝜀 , then 𝜌 is added
to the output; otherwise, 𝜌 is added to 𝐿 for further decomposition.

If only one solution is sought, then 𝜌 is sampled, looking for
points that may belong to the feasible region: if one such point is
found, it is returned as output.

After initialization, the algorithm enters a loop that stops when
𝐿 becomes empty. At each iteration, one domain 𝜎 is popped from
the queue, it is subdivided into subdomains𝜓𝑞 (𝜎), each of which
is processed with the function ProcessRegion. The number 𝑄 of
subdomains and the subdivision rules 𝜓𝑞 depend on the shape of

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

the domain Σ and are generated automatically by the compiler that
processes the problem specification (Section 4.1).

If the number of iterations exceeds the maximum number (default
𝐾max = ∞) then a conservative approximate solution is returned,
which consists of all regions already classified to be part of Φ̃, plus
all regions still in the queue 𝑆 when the algorithm stops. In this case,
the output is guaranteed to contain Φ but it may exceed Φ𝜀 .

Algorithm 1 Solve

Input: Initial domain Σ, constraint expression𝐶 , acceptance thresh-
old 𝜀, boolean FindOne, iteration limit 𝐾max

Output: Solution set 𝑆
1: 𝐿 ←Queue
2: 𝑆 ← ∅
3: 𝐾 ← 0 ⊲ iteration counter

4: ProcessRegion(Σ)
5: loop
6: if IsEmpty(𝐿) then
7: return 𝑆
8: if 𝐾 ≥ 𝐾max then
9: InsertAll(𝑆, 𝐿) ⊲ ensures we are conservative

10: return 𝑆
11: 𝜎 ←Pop(𝐿)
12: 𝐾 ← 𝐾 + 1
13: for all 𝑞 ∈ {1, . . . , 𝑄} do
14: ProcessRegion(𝜓𝑞 (𝜎)) ⊲ subdivide 𝜎

15: if FindOne ∧ ¬IsEmpty(S) then
16: return 𝑆
17: function ProcessRegion(𝜌)
18: if [□𝐶 (𝜌)]lo ≤ 0 then
19: if FindOne then ⊲ look for a point in the feasible region

20: 𝑉 ←Sample(𝜌)
21: for all 𝑣 ∈ 𝑉 do
22: if [□𝐶 (𝑣)]lo ≤ 0 ∧ [□𝐶 (𝑣)]hi ≤ 𝜀 then
23: Insert(𝑆, 𝑣) ⊲ 𝑣 ∈ Φ̃
24: return
25: if [□𝐶 (𝜌)]hi ≤ 𝜀 then
26: Insert(𝑆, 𝜌) ⊲ 𝜌 ⊂ Φ̃
27: else
28: Enqueue(𝐿, 𝜌) ⊲ 𝜌 will be subdivided

Minimize. Algorithm Minimize takes in input the problem do-
main Σ, the constraint function 𝐶 , the objective function 𝐹 , the
precision values 𝜀 and 𝛿 , plus an optional parameter 𝐾max, as in the
previous algorithm. It returns an interval 𝐹 ∗ not larger than 𝛿 such
that its lower end is lower than 𝐹 ∗ and its upper end is higher than
𝐹 ∗𝜀 . The pseudo-code is given in Algorithm 2.

The algorithm uses two local variables 𝑙, 𝑢 to maintain the lower
and upper bounds of the output interval, which are initially set to
infinity. In this case, a priority queue of regions 𝑃 is used, where
priority depends on the lower bound of the inclusion function of
the region: a region with the smallest lower bound has the highest
priority (function Priority). The queue is initialized by processing
the whole domain Σ. Function ProcessRegion takes in input a

region 𝜌 and adds it to the queue if its inclusion function intersects
the feasible region. It also samples 𝜌 looking for a point 𝑣 that
belongs to the buffer region Φ𝜀 , and if one is found it uses the
value of 𝐹 (𝑣) to update the upper bound 𝑢. After initialization, the
algorithm enters a loop that has three termination conditions: if the
desired precision is met, or the maximum number of iterations is
reached, then the current interval [𝑙, 𝑢] is returned; if 𝑃 becomes
empty without converging, then it means that the feasible region
is empty, hence an infinite interval is returned. Note that, since we
test the lower bound against 𝐹 ∗ and the upper bound against 𝐹 ∗𝜀 ,
and Φ ⊆ Φ𝜀 , we may have 𝐹 ∗𝜀 < 𝐹 ∗ hence potentially 𝑢 < 𝑙 . For this
reason, we set the upper bound of 𝐹 ∗ to max{𝑙, 𝑢}. In the loop, a
region 𝜎 is extracted from the queue, and the lower bound of the
solution is updated, because the priority warrants that the lower
bound of 𝐹 on all regions in the queue is greater than or equal to
that on 𝜎 . The 𝜎 is subdivided and its sub-regions are processed.

As in the previous case, if the algorithm exits because it exceeds
the maximum number of iterations, the solution is conservative but
approximate: it is still true that the lower end of 𝐹 ∗ is lower than
𝐹 ∗ and its upper end is larger than 𝐹 ∗𝜀 , but its width is > 𝛿 .

Algorithm 2 Minimize

Input: Initial domain Σ, constraint expression 𝐶 , constraint and
objective acceptance thresholds 𝜀 and 𝛿 , iteration limit𝐾max

Output: Interval 𝐹 ∗

1: 𝑙 ←∞ ⊲ lower bound of 𝐹 ∗

2: 𝑢 ←∞ ⊲ upper bound of 𝐹 ∗

3: 𝑃 ←PriorityQueue
4: 𝐾 ← 0
5: ProcessRegion(Σ)
6: loop
7: if 𝑢 − 𝑙 ≤ 𝛿 then
8: return [𝑙,max{𝑙, 𝑢}] ⊲ reached the desired precision

9: if IsEmpty(𝑃) then
10: return [∞,∞] ⊲ feasible region is empty

11: if 𝐾 ≥ 𝐾max then
12: return [𝑙,max{𝑙, 𝑢}] ⊲ return current approximation

13: 𝜎 ←Pop(𝑃)
14: 𝐾 ← 𝐾 + 1
15: 𝑙 ← [□𝐹 (𝜎)]lo ⊲ update lower bound

16: for all 𝑞 ∈ {1, . . . , 𝑄} do ⊲ subdivide 𝜎

17: ProcessRegion(𝜓𝑞 (𝜎))
18: function ProcessRegion(𝜌)
19: if [□𝐶 (𝜌)]lo ≤ 0 ∧ [□𝐹 (𝜌)]lo ≤ 𝑢 then
20: 𝑉 ←Sample(𝜌) ⊲ look for a point in the buffer region

21: for all 𝑣 ∈ 𝑉 do
22: if [□𝐶 (𝑣)]hi ≤ 𝜀 then
23: 𝑢 ← min{𝑢, [□𝐹 (𝑣)]hi} ⊲ update upper bound

24: Enqueue(𝑃, 𝜌, Priority(𝜌)) ⊲ 𝜌 will be subdivided

25: function Priority(𝜌)
26: return −[□𝐹 (𝜌)]lo ⊲ smallest lower bound on □𝐹 goes first

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 9

5 IMPLEMENTATION
The main purpose of the MiSo compiler is to produce the C++ code
to evaluate the inclusion functions for the functions defined in the
problem specification, and to implement domain subdivision.

Each function defined for the specific problem is first represented
with an expression tree, whose leaves can be constants, variables,
or polynomials represented symbolically in SymPy, while inner
nodes are operators (Section 5.2). The related inclusion function is
assembled by analyzing this tree and applying specific rules for the
leaves and the inner operators (Section 5.3). The inclusion functions
for polynomials exploit the convex hull property of their Bézier
representation while rules for the inner operators stem from interval
analysis (Appendix C).

5.1 Symbols
Before writing the expressions for the constraints and/or objective,
the user must define the symbols that will appear in the expressions.
MiSo has two types of symbols: variables and arguments. Both are
defined through methods of the Context object that appears in the
code in Figure 4, which keeps track of what symbols have been
created. MiSo uses SymPy to store and manipulate expressions, but
disallows the use of Symbol objects in expressions if they are not
known to the Context.

Variables. These symbols describe the parameter space of the
problem. They are created through the variables method of the
Context object on a per-simplex basis: variables(n) declares n
variables corresponding to the dimensions of a standard n-simplex.
Variables are automatically assigned names by their Context, but
the user can also specify a custom name: this has no practical effect
on the generated C++ code but can be useful, e.g., to debug a faulty
specification by printing expressions with descriptive names.

Arguments. These symbols represent data the user must pass
to the program. They are created through the arguments method
of the Context object on a per-vector basis, meaning that calling
arguments(n) declares n arguments that will be passed in as a single
iterable. Just like variables, arguments are automatically assigned
names by their Context, with the possibility to specify a custom
name to make the generated C++ class have meaningful parameter
names in its constructor.

While all symbols must be declared, the utility method geo_map
can implicitly declare arguments (that represent the control points
of the element in the generated expressions) if the user does not
supply their own.

5.2 Expressions
MiSo represents functions associated with a problem as expression
trees made of objects of type Node. This base class has derived
classes corresponding to the types of objects that make up a MiSo
expression tree:

• OpNode (Operator nodes)
• PolyNode (Polynomial nodes)
• VectorNode (Vector nodes)

Operator nodes. OpNodes represent the operators of expressions.
Every OpNode has a list of child nodes that can be PolyNodes as well
as other OpNodes. Both unary and binary operators are supported,
as well as 𝑛-ary versions of associative operators (e.g., the sum
or product of 𝑛 expressions). Rather than being created directly,
OpNodes are returned by overloaded arithmetic operators of the
Node parent class.

Polynomial nodes. The leaves of MiSo expression trees are of type
PolyNode. This object represents any polynomial expression 𝑃K (x)
in the (previously declared) variables x and with coefficients possibly
depending on the (previously declared) arguments K. The following
entities are all represented as PolyNodes in MiSo expression trees:

• numeric constants, as polynomials of degree 0;
• arguments, as polynomials of degree 0;
• variables, as polynomials of degree 1;
• polynomial expressions involving the above, where the de-

gree of the polynomial in each variable is automatically com-
puted.

The PolyNode object overloads several polynomial and non-polyno-
mial Python operators: these do not return a new PolyNode but
rather an OpNode with the operands as child nodes. If the user wants
to combine part of an expression tree into a single polynomial node,
calling the collapsemethod on the root of the subtree will return an
equivalent PolyNode object, or raise an exception if non-polynomial
operators are present in the subtree.

Vector nodes. Like operator nodes, vector nodes store a list of child
nodes, but in this case they represent the components of a vector. The
main use of the VectorNode class is to automatically cast operations
with single nodes and other vectors to component-wise operations.
The class also exposes “reduction” methods that return a single
OpNode with the components as children. A vector’s components
can be vectors themselves, allowing the user to represent matrices
such as the Jacobian matrix in Table 6.

5.3 Evaluating Inclusion Functions
The evaluation of an inclusion function for a given expression boils
down to evaluating the inclusion functions for the leaves of the tree
(from their Bézier representation) and then combining them up the
tree with interval arithmetic, according to the operators in the inner
nodes (as natural interval extensions).

The result of evaluating a node is always an interval. In the case
of a constant, this interval can be of zero width.

For a polynomial 𝑃 , we need to compute an interval that contains
𝑃 (𝜎). We always use the Bézier form as internal representation of
polynomials: a specific polynomial is translated to this form as soon
as it is taken in input, being represented as a set of coefficients with
respect to the Bézier basis of its corresponding space. Because of
the convex hull property of the Bézier representation, we know that
the range of 𝑃 (𝜎) is contained in the interval spanned by its lowest
and highest Bézier coefficients.

The combinations of intervals at inner nodes of the tree follow
the rules summarized in Appendix C. The types of operators in the
inner nodes can be extended easily as long as (robust) inclusion
functions are made available for them. For instance, trigonometric

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

operators could be included in MiSo by relying on the RLIBM library
[Aanjaneya et al. 2022, 2024; Lim and Nagarakatte 2022].

Note that, our choice of treating the polynomials as a special
class of functions is crucial to the efficiency of our solvers, since it
allows us to trade-off between NIE-based and Bézier-based inclusion
functions. Given the polynomial nature of many practical computer
graphics problems, our generic, automatically generated code often
demonstrates performance on par with, or even surpassing, hand-
crafted solutions tailored to specific problems (Section 6).

5.4 Domain Decomposition
The decompositions of a domain 𝜎 and a polynomial defined on 𝜎
use the same functions. Indeed, an affine function that maps 𝜎 onto
a subset of itself is a (vector) linear polynomial in all its variables.

Each decomposition function 𝜓𝑞 computes the Bézier control
coefficients of a polynomial defined on 𝜎 mapping it to its restriction
to subdomain𝜓𝑞 (𝜎). These coefficients are computed by applying
the De Casteljau decomposition on all the simplices that define 𝜎
and combining them by tensor product. This is possible because the
basis of the tensor product space of polynomials over a Cartesian
product △𝑛1 × · · · × △𝑛𝑠 with orders 𝑝1, . . . , 𝑝𝑠 is the tensor product
of the bases of the single spaces of polynomials defined on each △𝑛𝑖
with order 𝑝𝑖 . This property allows us to compile the conversion
matrices that implement all the 𝜓𝑞 mappings for the domain and
the polynomials defined on it.

The code for domain decomposition, and for the corresponding
decomposition of polynomials defined on the problem domain, is
generated automatically by considering the spaces of polynomials
corresponding to the leaves of the tree and generating subdivision
matrices with a contruction similar to [Johnen et al. 2014], which
we summarize here. Given a polynomial, we can compute its La-
grange representation by sampling it on the set of Lagrange points

L appropriate for its degree. In particular, this can be done for the
polynomials of the Bézier basis to generate a change of basis matrix
𝑇L←B to convert a polynomial in Bézier form to its Lagrange form.
By inverting this matrix, we obtain the opposite transformation
𝑇B←L = 𝑇 −1L←B to compute the Bézier coefficients of a polynomial
given its sampled values. To compute the Bézier coefficients on a
subdomain, we instead sample the Bézier basis polynomials at the
transformed Lagrange points𝜓𝑞 (L), which gives another transfor-
mation from Bézier to Lagrange form𝑇

𝑞

L←B ; by premultiplying this
by the Lagrange-to-Bézier matrix we computed earlier we get the
desired transformation matrix

𝑇
𝑞

B←B = 𝑇B←L𝑇
𝑞

L←B

Each of these linear transformations 𝑀 is assembled by the MiSo
compiler, then their product 𝑀v with an unknown vector v is
expanded, and the resulting expression vector is simplified with
SymPy’s common sub-expression elimination (CSE) tools, and fi-
nally encoded as a C++ function specific to that domain (Section 5.4).

5.5 The MiSo Compiler
We provide a package consisting of three distinct pieces:

• PyMiSo: a Python library that relies on SymPy to generate
C++ code;

• MiSo-core: a C++ library on which the generated code relies
upon;
• MiSo-algorithms: implementations of generic Solve and Min-
imize that rely on the MiSo-core library and are instantiated
with the code generated by running a problem specification.

As seen in Section 3.3, a problem specification in MiSo consists of
a Python script using functions from PyMiSo. The code generated
by running such a script is wrapped in a C++ class, which is used to
instantiate a specific solver by plugging it into a template function
from MiSo-algorithms.

All the operations necessary to convert polynomials between
different bases and perform domain decomposition are treated sym-
bolically in PyMiSo to generate the related C++ code that computes
such operations numerically, again leveraging CSE to simplify the
expressions and assist the compiler.

We provide two backends that differ only in the base type to
represent real numbers; the backend is selected when compiling the
C++ code, without changing the specification:

• Floating-point: in this case, all computations involving real
values are done with standard floating-point operations, while
interval arithmetic is used only to perform interval analysis
(essentially, in evaluating the inclusion functions). The code
will be faster, but the result will not be conservative.
• Interval: in this case, interval arithmetic is used throughout,

for both interval analysis and numerical computations. The
result will be conservative, at some additional cost.

In both cases, our C++ code has the NFG library [Attene 2020, 2025]
as the only dependency, for interval arithmetic.

Extensions. By default, the subdivision rules in the generated code
are those explained in Section 5.4, i.e., domain Σ is subdivided along
all cartesian axes. MiSo enables customizing these rules, and in some
of our experiments with moving objects we also use a subdivision
in the time dimension only.

MiSo can be easily customized in two ways:

(1) By adding new functions to PyMiSo one can, for instance: add
new subdivision rules; and add conversions of polynomials
from other bases.

(2) By customizing the generic algorithms in MiSo-algorithms:
these can be simply cloned, modified, and instantiated with
the class generated by running the specification. In Section 6.2,
we use a customized version of Minimize in a comparison
against [Chen et al. 2024] to comply with their termination
conditions.

Extending MiSo to support a wider class of expressions, e.g., in-
cluding transcendental functions and/or rational polynomials is
more delicate, since it requires modifying MiSo-core, and will be
the subject of future work.

6 APPLICATIONS
We now explore the uses of our DSL in a disparate set of graphics and
geometric modeling applications. For each application, we briefly
introduce the state of the art, select a representative problem, and
present a solution with a MiSo program.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 11

For all experiments, we used a laptop with an AMD Ryzen 7 4000
series processor, 16 GB of RAM, and compiled with GCC 12.2.0 on
Debian Linux.

6.1 Static Objects Intersections
Computing the intersection between parametric primitives is a sta-
ple in physical simulation to detect and respond to contact. Many
methods have been proposed, with a wide range of primitives sup-
ported and accuracy targets. We refer to [Akenine-Möller et al. 2018]
for an overview of fast methods used in real-time physics engines
and to [Wang et al. 2021] for an overview of conservative methods
used for offline simulation.

Explicit Cubic Triangle-Linear Segment Intersection. We consider
the problem used in Section 3.3 as a didactic example. First we for-
mulate this problem as a Solve and execute the query on 3 cases
(Figure 5). We used 𝜀 = 10−4, and the three queries return the in-
tersections in all 3 cases, with a runtime of 52𝜇𝑠 , 163𝜇𝑠 , and 215𝜇𝑠 ,
respectively. We can treat the (oriented) segment as a ray and ask
to find the first time of collision with the curved patch. To do so, we
solve the corresponding Minimize problem with the single parame-
ter of the segment as the objective function, representing time. The
same queries as before are solved with 𝛿 = 𝜀 = 10−4 in 124𝜇𝑠 , 191𝜇𝑠 ,
and 148𝜇𝑠 respectively, with results [0.333251, 0.333312], [0.146423,
0.146423], [0.294250, 0.294281]. For the first query, we know that
the true time of impact is 1/3. Note that the upper bound does not
contain this point: the algorithm verified that, at that time, the two
objects were closer than 𝜀.

Explicit Linear Triangle-Sphere Intersection. We compute the in-
tersection between a linear triangle and a hollow sphere. Both prim-
itives are represented in parametric form: the sphere is incomplete,
being parametrized on a square via the stereographic projection,
which is a rational polynomial map. Note that this requires divisions
between intervals, which is supported in our framework, but is risky
and should be handled with great care (see Appendix C). While we
keep this formulation as an example of a problem involving ratio-
nal polynomials, the issue above can be avoided for this specific
problem by multiplying the coordinates of both primitives by the
denominator of the stereographic projection map.

The query should be called twice to find the intersection with the
full sphere. We express this as a Solve problem, using the program
in Figure 7. One query finds an intersection with 74181 regions in
4D parametric space in 338ms to precision 10−2.

6.2 Dynamic Objects Intersections
Static collision detection might miss collisions in dynamic simu-
lation when objects move quickly. Continuous collision detection
addresses this challenge by finding the time at which the first col-
lision appears, assuming that the primitives are moving through
time using a linear [Chen et al. 2024; Wang et al. 2021] or nonlinear
[Ferguson et al. 2021; Zhang et al. 2023] trajectory.

Alternative subdivision strategies. In the following MiSo specifi-
cations we also show how the user can specify different subdivi-
sion strategies. The generate function has an optional paramter

1 with pymiso.Context () as miso:

2 U = miso.variables(1, 'U') #declare variables with names (optional)

3 V = miso.variables(1, 'V')

4 X = miso.variables(2, 'X')

5 center = miso.arguments(3, 'c') #declare arguments explicitly (sphere center)

6 # Create the sphere 's geometric map via stereographic projection

7 uv_scale = 4

8 Uc = ((2*U-1) * uv_scale).collapse ()

9 Vc = ((2*V-1) * uv_scale).collapse ()

10 U2V2 = (Uc**2 + Vc**2)#.collapse ()

11 sphere = (miso.vector (2*Uc, 2*Vc, U2V2 -1) / (U2V2 +1)) + center

12 pb = miso.bases.LAGRANGE

13 triangle = miso.poly_space ((X,1)).geo_map(pb, 3) #triangle geometric map

14 dist = ((triangle -sphere)**2).sum() #distance

15 miso.generate('./src/generated ', 'SphereTriangleSSI ', dist)

(1) (2) (3)

Fig. 7. Intersection of a triangle with a hollow sphere. (1) Both primitives
are expressed in parametric form, the sphere requiring rational polynomials.
They intersect at two disjoint arcs (in red). (2) Our solutions in the para-
metric domain of the triangle. (3) Our solutions in the parametric domain
of the sphere. Note that the shown solutions are obtained with reduced
accuracy to make them visible, and contain overlapping regions since they
are projections of a 4D solution set (with no overlaps) onto 2D spaces.

strategies for this purpose; the user can supply an iterable of sub-
division objects (created with subdiv_strategy) and the compiler
will generate the necessary code to subdivide the domain according
to these strategies. It is assumed that at least one strategy is pro-
vided, and if the user does not specify one, the default of subdividing
on all axes will be used automatically.

Strategies are assigned an index, starting from 0, ordered as they
are passed to generate. Each region pushed onto the queue holds
an integer specifying the index of the strategy to use to subdivide it,
with strategy 0 being used when a strategy with the specified index
does not exist. The conditions under which each strategy is used
depends on the implementation of the algorithms. The provided
Solve algorithm always uses strategy 0, the default. In the provided
Minimize algorithm, strategy 0 is the default, whereas strategy 1 is
used to subdivide regions where a feasible point has been found.

The reasoning behind this is the following: consider a region of
space-time that spans times [[𝑡]lo, [𝑡]hi]. If the algorithm verifies
that the system is in an invalid state at time [𝑡]hi, it may be enough
to split in the time variable only, pushing 2 subdomains onto the
priority queue as opposed to e.g. 32 for the CCD problem for surface
elements.

If the user wants to implement other strategies (e.g. alternating
subdivisions on the two elements in a CCD query), it is easy to add
them to the specification code, and modify the base algorithm so
that it uses the desired strategy under certain conditions.

Linear Triangle - Quadratic Trajectories. The program in Figure
8 computes, conservatively, the first intersection between two tri-
angles whose vertices are moving on a quadratic trajectory. The

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

1 with pymiso.Context () as miso:

2 X = miso.variables (2)

3 Y = miso.variables (2)

4 T = miso.variables (1)

5 pb = miso.bases.LAGRANGE

6 elem_a = miso.poly_space ((X, 1))

7 elem_b = miso.poly_space ((Y, 1))

8 xa0 = elem_a.geo_map(pb, 3) #static geometric maps

9 xa1 = elem_a.geo_map(pb, 3)

10 xa2 = elem_a.geo_map(pb, 3)

11 xb0 = elem_b.geo_map(pb, 3)

12 xb1 = elem_b.geo_map(pb, 3)

13 xb2 = elem_b.geo_map(pb, 3)

14 timebasis = miso.poly_space ((T,2)).basis(pb) #Lagrange basis in T

15 xav = miso.vector(xa0 , xa1 , xa2) #dynamic geometric maps

16 xa = (xav * timebasis).sum().collapse ()

17 xbv = miso.vector(xb0 , xb1 , xb2)

18 xb = (xbv * timebasis).sum().collapse ()

19 dist = ((xb-xa)**2).sum()

20 sd = [miso.subdiv_strategy (), miso.subdiv_strategy(T)]

21 miso.generate('./src/generated ', 'CurvedCCD ', dist , objective=T, strategies=

sd)

Fig. 8. Linear triangle CCD on quadratic trajectories. The direction of tra-
jectories is marked with arrows. Left: Collision occurs and is detected on a
whole edge (red) at a single time; primitives are disjoint at all other times.
Right: no collision at all.

1 with pymiso.Context () as miso:

2 X = miso.variables () #declare variables

3 Y = miso.variables ()

4 T = miso.variables ()

5 elem_a = miso.poly_space ((X, 1)) #create static elements

6 elem_b = miso.poly_space ((Y, 1))

7 pb = miso.bases.BEZIER

8 xa0 = elem_a.geo_map(pb, 3) #compute static geometric maps

9 xa1 = elem_a.geo_map(pb, 3)

10 xb0 = elem_b.geo_map(pb, 3)

11 xb1 = elem_b.geo_map(pb, 3)

12 xa = ((xa0 * (1-T)) + (xa1 * T)).collapse () #compute dynamic geometric maps

13 xb = ((xb0 * (1-T)) + (xb1 * T)).collapse ()

14 L22 = ((xb-xa)**2).sum() #compute squared distance

15 sd = [miso.subdiv_strategy (), miso.subdiv_strategy(T)] #subdiv. strategies

16 miso.generate('./src/generated ', 'EECCD ', L22 , objective=T, strategies=sd)

Fig. 9. Linear segment CCD on linear trajectories. The code, used for com-
parisons with [Wang et al. 2021], is similar to the one in Figure 8.

Minimize problem is solved to precision 𝛿 = 10−4 with tolerance
𝜀 = 10−4. The first query reports a collision interval of [0.499939,
0.499969] in 744𝜇𝑠 . The true time of collision is 1/2: as in Section 6.1,
this is a conservative solution to the Minimize problem. In the sec-
ond case, our algorithm correctly classifies the trajectory as collision-
free in 34𝜇𝑠 , returning [∞,∞].

Comparison with [Wang et al. 2021]. We consider the problem
of continuous collision detection of a pair of edges whose vertices
are moving on linear trajectories. Figure 9 shows the specification
and an example query. We compare the result of MiSo with the
heavily optimized algorithm in [Wang et al. 2021] in Table 2. Our
algorithm is conservative and around an order of magnitude faster

1 with pymiso.Context () as miso:

2 X = miso.variables (2)

3 Y = miso.variables (2)

4 T = miso.variables (1)

5 elem_a = miso.poly_space ((X, 3))

6 elem_b = miso.poly_space ((Y, 3))

7 pb = miso.bases.LAGRANGE

8 xa0 = elem_a.geo_map(pb, 3)

9 xa1 = elem_a.geo_map(pb, 3)

10 xb0 = elem_b.geo_map(pb, 3)

11 xb1 = elem_b.geo_map(pb, 3)

12 xa = ((xa0 * (1-T)) + (xa1 * T)).collapse ()

13 xb = ((xb0 * (1-T)) + (xb1 * T)).collapse ()

14 dist = ((xb-xa)**2).sum()

15 sd = [miso.subdiv_strategy (), miso.subdiv_strategy(T)]

16 miso.generate('./src/generated ', 'CubicTriCCD ', dist , objective=T, strategies

=sd)

Fig. 10. Cubic triangles CCD on linear trajectories. The code is similar to
the one in Figure 8. The result at the bottom is an example of the queries
used for comparisons with [Chen et al. 2024; Zhang et al. 2023].

on hard queries, whereas it is one order of magnitude slower on
easy queries.

Table 2. EECCD on the handcrafted (15K queries) and simulation (41M
queries) datasets from [Wang et al. 2021], 106 max iterations. We show
average time per query in microseconds, number of false positives (#FP)
and false negatives (#FN, i.e. missed collisions).

Dataset Handcrafted Simulation
Method Ours Theirs Ours Theirs
𝜀 = 𝛿 10−4 10−6 10−6 10−4 10−6 10−6

𝜇𝑠/query 102 243 3029 3.5 4.3 0.78
#FP 222 52 214 11375 42 17
#FN 0 0 0 0 0 0

Comparison with [Zhang et al. 2023] and [Chen et al. 2024]. Adapt-
ing our algorithm to higher-order collision detection requires mini-
mal changes to our MiSo program. In Figure 10, we show a MiSo
program to compute the cubic triangle to cubic triangle continuous
collision problem introduced in [Zhang et al. 2023]. We compare our
method with the SOS-based solver in [Zhang et al. 2023] and the
inclusion-based solver in [Chen et al. 2024] on randomly generated
queries.

For a fair comparison, we employ a slightly modified version of
Minimize that uses the same termination condition as [Chen et al.
2024], as discussed in Appendix A. We also substitute the squared 𝐿2
distance with the 𝐿∞ distance as in [Chen et al. 2024]. Their method
also uses Oriented Bounding Boxes (OBB) to verify the separation
between patches, which is difficult to do robustly, so we instead

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 13

Table 3. Cubic triangle CCD in 3D. Runtime averaged on 1000 random
queries, 10−4 precision. Minimize has been modified for this test to use the
same termination condition and subdivision strategy as [Chen et al. 2024]’s
method.

Method 𝑚𝑠/query
[Chen et al. 2024] TDI + OBB 33

[Chen et al. 2024] "traditional" + OBB 241
[Zhang et al. 2023] (SOSP) 7528

MiSo w/ interval arithmetic backend 482
MiSo w/ floating point backend 176

1 def QuadPatchCCD(variant =0):

2 with pymiso.Context () as miso:

3 X1 = miso.variables ()

4 X2 = miso.variables ()

5 Y1 = miso.variables ()

6 Y2 = miso.variables ()

7 T = miso.variables ()

8 elem_a = miso.poly_space ((X1, 1), (X2, 1))

9 elem_b = miso.poly_space ((Y1, 1), (Y2, 1))

10 pb = miso.bases.BEZIER

11 xa0 = elem_a.geo_map(pb, 3)

12 xa1 = elem_a.geo_map(pb, 3)

13 xb0 = elem_b.geo_map(pb, 3)

14 xb1 = elem_b.geo_map(pb, 3)

15 xa = ((xa0 * (1-T)) + (xa1 * T)).collapse ()

16 xb = ((xb0 * (1-T)) + (xb1 * T)).collapse ()

17 dist = ((xb-xa)**2).sum() #hybrid version

18 if variant == 'Bezier ':

19 dist = dist.collapse () #Bezier -based version

20 elif variant == 'NIE':

21 dist = dist.expand () #NIE -based version

22 sd = [miso.subdiv_strategy (), miso.subdiv_strategy(T)]

23 miso.generate('./src/generated ', 'QuadCCD ', dist , objective=T, strategies=sd)

Fig. 11. MiSo specification for CCD of linear quadrilateral patches. Notice
that the variables are declared separately as they are not part of the same
simplex (the parameter space of the problem is [0, 1]5).

use Polyhedral Bounding Boxes (PBB) in our version. A complete
description of the modified specification and the use of PBBs is in
Appendix D.

Our approach is more efficient than SOS, while being guaranteed
conservative. Compared to [Chen et al. 2024], our program has com-
parable performance without using their time-dependent inclusion
approach (TDI), and becomes one order of magnitude slower when
TDI is used for [Chen et al. 2024] (See Table 3). It would be inter-
esting to generalize the TDI idea to our DSL and make it usable in
additional problems beyond continuous collision detection. Note
that, our solver is conservative, while [Chen et al. 2024] relies on a
numerical tolerance.

6.3 Collapsing the Expression
To demonstrate the performance gains that can be achieved with
a DSL that allows for quick experimentation of different solutions,
we compare several equivalent MiSo specifications to CCD queries
in terms of efficiency.

First, we consider three possible specifications of the CCD prob-
lem for bilinear quad patches, shown in Figure 11. We run the
experiment on 100 random collision pairs generated as in [Chen

Table 4. Comparison of several equivalent specifications of the order 3
triangle CCD problem, using Minimize with parameters 𝜀 = 10−6, 𝛿 = 10−4,
and the numerically robust backend. Fully expanded and fully collapsed
versions of this problem are not included, as the former does not converge
in a reasonable time, and the latter uses too much memory to generate the
code.

Average 𝑚𝑠/query # iterations 𝜇𝑠/iteration
V1 (unchanged) 203 6520 31
V2 (expanded) 271 9740 28
V3 (collapsed) 2267 6340 358

Median 𝑚𝑠/query # iterations 𝜇𝑠/iteration
V1 (unchanged) 38 1156 32
V2 (expanded) 54 1798 30
V3 (collapsed) 413 1082 382

et al. 2024], using the squared Euclidean distance, with parame-
ters 𝜀 = 10−6, 𝛿 = 10−4, and the numerically robust backend. The
NIE-based approach takes an average of 2 seconds per query, the
Bézier-based approach takes 1 second per query, and our hybrid
approach takes 52 milliseconds per query.

Next, we consider three variants of the specification shown in
Figure 10:

(1) one without modifications, where we collapse the expressions
for the time-dependent geometric maps;

(2) one “slightly expanded” version without the two collapse
statements at lines 12 and 13, meaning that the inclusion
functions of the static geometric maps will be computed sep-
arately with Bézier inclusions and then combined by natural
interval extension;

(3) one “slightly collapsed” with a single collapse statement on
the (xb-xa) expression in line 14, meaning that the difference
of each coordinate of the two time-dependent geometric maps
will be considered a single polynomial in 5 variables.

In addition, one could fully expand the expression (i.e., compute
inclusions with interval arithmetic only) or fully collapse it into one
node (since the squared Euclidean distance is polynomial). The fully
expanded version produces inclusion functions too large to converge
in a reasonable number of iterations and in general is slower by
multiple orders of magnitude; whereas the code generation phase
of the second one used too many resources to complete on our
setup, as it had to pre-compute transformation matrices of a degree
6 polynomial in 5 variables.

The three equivalent versions were tested on the same dataset as
the experiment in Table 3, but in this case without modifications in
the Minimize algorithm, with parameters 𝜀 = 10−6, 𝛿 = 10−4, and
the numerically robust backend. The results are presented in Table 4,
and show that there is a sweet spot between fully NIE-based and
fully Bézier-based inclusions that can be easily found by changing
a few lines in the MiSo specification.

In terms of generation time, the collapsed version took 15 minutes,
whereas the expanded and unmodified versions took approximately
10 seconds each.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

1 def ImplicitSphereBooleans(operation):

2 with pymiso.Context () as miso:

3 X = miso.variables ()

4 Y = miso.variables ()

5 Z = miso.variables ()

6 centerA = miso.arguments(3, 'ca')

7 radiusA = miso.arguments(1, 'ra')

8 centerB = miso.arguments(3, 'cb')

9 radiusB = miso.arguments(1, 'rb')

10 xyz = miso.vector(X,Y,Z)

11 d2a = ((xyz -centerA)**2).sum() - radiusA **2

12 d2b = ((xyz -centerB)**2).sum() - radiusB **2

13 if operation == 'SSI': constr = abs(d2a) | abs(d2b)

14 elif operation == 'Union ': constr = d2a & d2b

15 elif operation == 'Intersection ': constr = d2a | d2b

16 elif operation == 'Difference ': constr = d2a | -d2b

17 else: raise ValueError('Unknown␣operation ')

18 miso.generate('./src/generated ', f'Sphere{operation}', constr)

SSI Di�erence Intersection Union

Fig. 12. Boolean and SSI operations between two implicit spheres. Top: MiSo
specification is parametrized on the type of Boolean operation. Bottom,
from left to right: results of SSI, boolean difference, intersection, and union
with 𝜀 = 10−2.

Table 5. SSI and booleans between two implicit spheres - full solution with
tolerances 𝜀 = 10−2 and 𝜀 = 10−3. We list the total runtime of Solve and
the number of regions in the output.

𝜀 = 10−2 𝜀 = 10−3
Query Total𝑚𝑠 #regions Total𝑚𝑠 #regions

SSI 1 282 5 3390
Solid ∩ 4 4570 260 410954
Solid \ 8 10082 595 1002961
Solid ∪ 13 16564 1015 1602996

6.4 Implicit Booleans
We take inspiration from [Snyder 1991] and cast Boolean operations
between two implicit spheres as a Solve problem (Figure 12). We
report statistics in Table 5: changing the primitive types and opera-
tions are minor changes in the specifications, making our compiler
a powerful tool to compute conservative Boolean solutions between
implicit and explicit primitives.

6.5 Minimal Distance
Computing distances between linear meshes is a classical problem
that has been extensively studied [Baerentzen and Aanaes 2005;
Bartoň et al. 2010; Carretero and Nahon 2005; Cignoni et al. 1998;
Guezlec 2001; Jones et al. 2006; Kang et al. 2019; Zheng et al. 2022]
and for which robust and efficient algorithms exist. Its curved ver-
sion is more challenging [Alt and Scharf 2008; Kim et al. 2013; Son
et al. 2021].

1 with pymiso.Context () as miso:

2 U = miso.variables ()

3 V = miso.variables ()

4 R = miso.variables ()

5 pb = miso.bases.LAGRANGE

6 segment = miso.poly_space ((R,1)).geo_map(pb, 3)

7 patch = miso.poly_space ((U,2) ,(V,2)).geo_map(pb, 3)

8 dist = ((segment -patch)**2).sum()

9 miso.generate('./src/generated ', 'ClosestPoint ', objective=dist)

Fig. 13. Distance between quadratic Bézier patch (gray) and segment (blue).
The direction (green) of the closest point pairs (red) is shown.

Quadratic Bézier Patch - Segment. With MiSo, it is simple to com-
pute minimal distances between curved primitives: we show an
example with a quadratic Bézier patch and a linear segment in Fig-
ure 13. With 𝛿 = 10−2 this query takes around 2ms and returns
the interval [0.750706, 0.760696] as estimation of the squared 𝐿2
distance between the primitives; with 𝛿 = 10−4 the timing increases
to 223ms and returns [0.760585,0.760685].

6.6 Geometrical Validity Check
In finite element simulation, it is usually assumed that the geometric
map of each element is injective or, equivalently, that the Jacobian
of the geometric map is positive everywhere on the element domain.
If this property holds, a finite element is said to be valid. For linear
elements, validity can be tested using the Orient2D and Orient3D

predicates introduced in [Shewchuk 1997]. For high-order elements
– including hexahedral meshes, which are at least trilinear – the
problem is more challenging, as the Jacobian is not constant in
the element domain [Marschner et al. 2020b]. Johnen et al. [2014]
propose an inclusion-based method, which we compare with our
MiSo implementation (Figure 14).

In Table 6 we report results on a mesh consisting of 48050 valid
tetrahedra and 6935 invalid ones (Figure 14 bottom right). Since this
is a boolean test, we use the Solve algorithm with the FindOne flag
activated, to early terminate the search as soon as we find that the
element contains an invalidity. Our version with interval arithmetic
is slightly slower on average (7𝜇𝑠 vs 5𝜇𝑠) than the implementation
in [Johnen et al. 2014], which uses numerical tolerances and is thus
not provably conservative. The same program, compiled with our
floating point backend, leads to a faster (3𝜇s) average runtime.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 15

Table 6. Geometrical validity of order 3 tetrahedra. We show the per-query
runtime averaged on 54985 queries.

Method 𝜇𝑠/query
[Johnen et al. 2014] 5

MiSo w/ interval arithmetic backend 7
MiSo w/ floating point backend 3

1 def SimplexValidity(D, P):

2 with pymiso.Context () as miso:

3 X = miso.variables(D)

4 geo = miso.poly_space ((X,P)).geo_map(miso.bases.LAGRANGE , D)

5 jd = x.jacobian ().det().collapse () #Jacobian determinant

6 miso.generate('./src/generated ', f'ValidityD{D}P{P}', jd)

Rest geometry Deformed geometry

Fig. 14. Geometrical validity check for cubic tetrahedral elements. The
shape to the left consists of all valid tetrahedra; we test the deformed model
to the right, which contains geometrically inverted elements.

6.7 Compilation Time
The efficiency of our automatically generated code is partially due
to unrolling all numerical computations, thus allowing for code
optimization at compile time. We perform common subexpression
elimination (CSE) on SymPy expressions generated by our speci-
fication before generating the C++ code, thus providing the C++
compiler with pre-optimized expressions. Compiling a specification
for the queries presented in the previous section requires, on aver-
age, about one minute for running both the Python script and the
C++ compiler on a single core.

Without the SymPy CSE stage, the C++ compiler can do the
optimization, with little effect on the efficiency of the final code, but
compilation time can increase dramatically. For instance, for the
problem of geometrical validity of tetrahedra of order three (which
involves large polynomials), our total generation+compilation time
on a single core is ∼ 130𝑠 , but increases to about 20 minutes if
SymPy’s CSE is disabled.

7 CONCLUSIONS
We introduced MiSo, a domain-specific language and compiler to
generate efficient and robust C++ code for solving a plethora of
problems in graphics and geometry processing.

We believe our tool will benefit the graphics community in several
ways: (1) it produces robust and provably conservative solvers with
minimal user effort, (2) it can be used as a reasonably efficient

conservative ground truth to validate ad-hoc accelerated algorithms,
(3) it enable quick prototyping of Solve and Minimize algorithms
variants, extending the benefits to other classes of problems.

With our approach, the historically cumbersome task of inventing,
developing, and testing ad-hoc collision detection algorithm for each
pair of primitives [Akenine-Möller et al. 2024] can be automated:
we hope with future improvements of MiSo (for example using the
strategy proposed in [Chen et al. 2024] for time-dependent problems)
that the runtime could become competitive or even surpass manually
implemented codes.

Limitations. The main limitation of our compiler is that it is in-
herently limited to problems with a small number of dimensions:
our subdivision approach becomes impractical otherwise. However,
as we demonstrated in the paper, there are many important low-
dimensional problems of this kind in graphics. A second addressable
limitation is that our compiler slows down with high-order poly-
nomials, as it relies on symbolic computation. Hybrid strategies
mixing symbolic and numerical evaluation might ameliorate this
problem, which we only encountered when writing queries involv-
ing elements of high polynomial degree (over 5).

Future work. MiSo is a first step toward the compilation of ro-
bust and efficient solvers for Solve and Minimize problems. There
are many avenues of future work including: (1) adding support for
transcendental functions using [Aanjaneya et al. 2022, 2024], (2) par-
allelization of the search on shared memory multi-core processors,
(3) automatic, possibly data-driven, optimization of the subdivision
strategy and inclusion function computation, (4) adoption and gen-
eralization of the strategy in [Chen et al. 2024] for time-dependent
problems.

Reproducibility. We will release an open-source implementation
of our compiler to make our results reproducible and to foster the
adoption of MiSo in the graphics community.

ACKNOWLEDGMENTS
This work was supported in part through the NYU IT High Per-
formance Computing resources, services, and staff expertise. This
work was also partially supported by the NSF grants OAC-2411349
and IIS-2313156, a gift from Adobe Research, and by the MUR-PRIN
Project N. 2022YB4NRS "FabDesign".

REFERENCES
M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2022. Progressive polynomial approxi-

mations for fast correctly rounded math libraries. In Proceedings of the 43rd ACM

SIGPLAN International Conference on Programming Language Design and Implemen-

tation (San Diego, CA, USA) (PLDI 2022). ACM, New York, NY, USA, 552–565.
M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2024. The RLIBM Project. https://github.

com/rutgers-apl/The-RLIBM-Project
T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2018.

Real-Time Rendering 4th Edition. A.K. Peters/CRC Press, Boca Raton, FL, USA.
T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2024.

Real-Time Rendering - Ray Tracing Resources Page. https://www.realtimerendering.
com/intersections.html

H. Alt and L. Scharf. 2008. Computing the Hhausdorff Distance between Curved
Objects. International Journal of Computational Geometry & Applications 18, 04
(2008), 307–320.

M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided

Design 126 (2020), 102856.
M. Attene. 2025. NFG - Numbers For Geometry. https://github.com/MarcoAttene/NFG

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/rutgers-apl/The-RLIBM-Project
https://github.com/rutgers-apl/The-RLIBM-Project
https://www.realtimerendering.com/intersections.html
https://www.realtimerendering.com/intersections.html
https://github.com/MarcoAttene/NFG

16 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

J.A. Baerentzen and H. Aanaes. 2005. Signed distance computation using the angle
weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics

11, 3 (2005), 243–253.
M. Bartoň, I. Hanniel, G. Elber, and M.-S. Kim. 2010. Precise Hausdorff distance compu-

tation between polygonal meshes. Computer Aided Geometric Design 27, 8 (2010),
580–591. https://www.sciencedirect.com/science/article/pii/S016783961000049X
Advances in Applied Geometry.

G. Louis Bernstein and F. Kjolstad. 2016. Why New Programming Languages for
Simulation? ACM Trans. Graph. 35, 2, Article 20e (May 2016), 3 pages.

T. Brochu, E. Edwards, and R. Bridson. 2012. Efficient geometrically exact continuous
collision detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012), 7 pages.

J.A. Carretero and M.A. Nahon. 2005. Solving minimum distance problems with con-
vex or concave bodies using combinatorial global optimization algorithms. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 6 (2005),
1144–1155.

X. Chen, C. Yu, X. Ni, M. Chu, B. Wang, and B. Chen. 2024. A Time-Dependent Inclusion-
Based Method for Continuous Collision Detection between Parametric Surfaces.
ACM SIGGRAPH Computer Graphics 43, 6 (2024).

P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on Simplified
Surfaces. Computer Graphics Forum 17, 2 (1998), 167–174.

G.E. Collins and A.G. Akritas. 1976. Polynomial real root isolation using Descarte’s
rule of signs. In Proceedings of the third ACM symposium on Symbolic and algebraic

computation - SYMSAC ’76 (SYMSAC ’76). ACM Press, 272–275.
CVX Research, Inc. 2012. CVX: Matlab Software for Disciplined Convex Programming,

version 2.0. https://cvxr.com/cvx.
Etienne De Klerk, Monique Laurent, and Pablo A. Parrilo. 2006. A PTAS for the

minimization of polynomials of fixed degree over the simplex. Theoretical Computer

Science 361, 2-3 (Sept. 2006), 210–225. https://doi.org/10.1016/j.tcs.2006.05.011
Etienne De Klerk, Monique Laurent, and Zhao Sun. 2014. An error analysis for poly-

nomial optimization over the simplex based on the multivariate hypergeometric
distribution. http://arxiv.org/abs/1407.2108 arXiv:1407.2108 [math].

E. De Klerk, M. Laurent, Z. Sun, and J.C. Vera. 2017. On the convergence rate of grid
search for polynomial optimization over the simplex. Optimization Letters 11, 3
(March 2017), 597–608.

Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D.M.
Kaufman, and D. Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM

Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021).
J. Garloff, C. Jansson, and A.P. Smith. 2003. Lower bound functions for polynomials. J.

Comput. Appl. Math. 157, 1 (2003), 207–225.
M. Grant and S. Boyd. 2008. Graph implementations for nonsmooth convex programs.

In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura
(Eds.). Springer-Verlag Limited, 95–110.

A. Guezlec. 2001. "Meshsweeper": dynamic point-to-polygonal mesh distance and
applications. IEEE Transactions on Visualization and Computer Graphics 7, 1 (2001),
47–61.

S. Hadap, D. Eberle, P. Volino, M.C. Lin, S. Redon, and C. Ericson. 2004. Collision
detection and proximity queries. In ACM SIGGRAPH 2004 Course Notes (Los Angeles,
CA) (SIGGRAPH ’04). ACM, New York, NY, USA, 15–es.

E.R. Hansen and R.I. Greenberg. 1983. An interval Newton method. Appl. Math. Comput.

12, 2-3 (May 1983), 89–98.
P. Herholz, X. Tang, T. Schneider, S. Kamil, D. Panozzo, and O. Sorkine-Hornung. 2022.

Sparsity-Specific Code Optimization using Expression Trees. ACM Transactions on

Graphics 41, 5 (2022), 175:1–19.
K. Hormann, L. Kania, and C. Yap. 2021. Novel Range Functions via Taylor Expansions

and Recursive Lagrange Interpolation with Application to Real Root Isolation. In
Proceedings of the 2021 International Symposium on Symbolic and Algebraic Compu-

tation (Virtual Event, Russian Federation) (ISSAC ’21). ACM, New York, NY, USA,
193–200.

K. Hormann, C. Yap, and Y.S. Zhang. 2023. Range Functions of Any Convergence
Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific

Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag,
Berlin, Heidelberg, 162–182.

Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019. Taichi: a language
for high-performance computation on spatially sparse data structures. ACM Trans-

actions on Graphics 38, 6 (Nov. 2019), 1–16.
L. Jaulin, I. Braems, and E. Walter. 2002. Interval methods for nonlinear identification

and robust control. In Proceedings of the 41st IEEE Conference on Decision and Control,

2002., Vol. 4. IEEE, Las Vegas, NV, USA, 4676–4681.
A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear

finite elements. J. Comput. Phys. 233 (2013), 359–372.
A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order

Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382.
M.W. Jones, J.A. Baerentzen, and M. Sramek. 2006. 3D distance fields: a survey of

techniques and applications. IEEE Transactions on Visualization and Computer

Graphics 12, 4 (2006), 581–599.

Y. Kang, S.-H. Yoon, M.-H. Kyung, and M.-S. Kim. 2019. Fast and robust computation of
the Hausdorff distance between triangle mesh and quad mesh for near-zero cases.
Computers & Graphics 81 (2019), 61–72.

Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber. 2013. Efficient Hausdorff Distance
computation for freeform geometric models in close proximity. Computer-Aided

Design 45, 2 (2013), 270–276. Solid and Physical Modeling 2012.
F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. 2017. The tensor algebra

compiler. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1–29.

F. Kjolstad, S. Kamil, J. Ragan-Kelley, D.I.W. Levin, S. Sueda, D. Chen, E. Vouga, D.M.
Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A Language for
Physical Simulation. ACM Trans. Graph. 35, 2, Article 20 (May 2016), 21 pages.

S. Lengagne, R. Kalawoun, F. Bouchon, and Y. Mezouar. 2020. Reducing pessimism
in Interval Analysis using B-splines Properties: Application to Robotics. Reliable

Computing 27 (2020), 63–87.
B. Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate Con-

struction Kit (PCK). Computer-Aided Design 72 (2016), 3–12.
M. Li, D.M. Kaufman, and C. Jiang. 2021b. Codimensional incremental potential contact.

ACM Trans. Graph. 40, 4, Article 170 (July 2021), 24 pages.
Y. Li, S. Kamil, K. Crane, A. Jacobson, and Y. Gingold. 2024. I♥Mesh: A DSL for Mesh

Processing. ACM Trans. Graph. 43, 6 (2024).
Y. Li, S. Kamil, A. Jacobson, and Y. Gingold. 2021a. I♥LA: Compilable Markdown for

Linear Algebra. ACM Transactions on Graphics (TOG) 40, 6 (2021).
J.P. Lim and S. Nagarakatte. 2022. One polynomial approximation to produce correctly

rounded results of an elementary function for multiple representations and rounding
modes. Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan. 2022), 28 pages.

Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020a. Hexahedral Mesh Repair via
Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.

Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020b. Hexahedral Mesh Repair via
Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.

Z. Marschner, P. Zhang, D. Palmer, and J. Solomon. 2021. Sum-of-squares geometry
processing. ACM Trans. Graph. 40, 6, Article 253 (Dec. 2021), 13 pages.

J.P. Merlet. 2007. Interval Analysis and Robotics. Robotics Research 66, 147–156. https:
//doi.org/10.1007/978-3-642-14743-2_13

A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F.
Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š.
Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy:
symbolic computing in Python. PeerJ Computer Science 3 (2017), e103.

A. Meyer and S. Pion. 2008. FPG: A code generator for fast and certified geometric
predicates. In Real numbers and computers. 47–60.

M.B. Monagan, K.O. Geddes, K. M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and
P. DeMarco. 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada.

J. Nocedal and S.J. Wright. 2006. Numerical Optimization. Springer, New York.
J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust

Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363.
J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM

Trans. Graph. 34, 4, Article 70 (2015), 9 pages.
J.M. Snyder. 1991. Generative Modeling: An Approach to High Level Shape Design for

Computer Graphics and CAD. Ph. D. Dissertation.
J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992),

121–130.
J. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A.H. Barr. 1993. Interval Methods

for Multi-Point Collisions between Time-Dependent Curved Surfaces. In ACM

SIGGRAPH. ACM.
S.-H. Son, M.-S. Kim, and G. Elber. 2021. Precise Hausdorff distance computation for

freeform surfaces based on computations with osculating toroidal patches. Computer

Aided Geometric Design 86 (2021), 101967.
V. Stahl. 1995. Interval Methods for Bounding the Range of Polynomials and Solving

Systems of Nonlinear Equations. Ph. D. Dissertation.
M. Tang, R. Tong, Z. Wang, and D. Manocha. 2014. Fast and exact continuous collision

detection with Bernstein sign classification. ACM Transactions on Graphics 33, 6
(2014), 1–8. https://doi.org/10.1145/2661229.2661237

X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS: Sparsity-
Specific Code Generation. Computer Graphics Forum 39, 5 (Aug. 2020), 209–219.

B. Wang, . Ferguson, X. Jiang, M. Attene, D. Panozzo, and T. Schneider. 2022. Fast and
Exact Root Parity for Continuous Collision Detection. Computer Graphics Forum

(Proceedings of Eurographics) 41, 2 (2022), 9 pages.
B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021. A

Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision
Detection. ACM Trans. Graph. 40, 5, Article 188 (2021), 16 pages.

Huamin Wang. 2014. Defending continuous collision detection against errors. ACM

Transactions on Graphics 33, 4 (July 2014), 1–10.
Wolfram Research, Inc. 2023. Mathematica, Version 13.3. https://www.wolfram.com/

mathematica Champaign, IL.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://www.sciencedirect.com/science/article/pii/S016783961000049X
https://cvxr.com/cvx
https://doi.org/10.1016/j.tcs.2006.05.011
http://arxiv.org/abs/1407.2108
https://doi.org/10.1007/978-3-642-14743-2_13
https://doi.org/10.1007/978-3-642-14743-2_13
https://doi.org/10.1145/2661229.2661237
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

MiSo: A DSL for Robust and Efficient Solve and Minimize Problems • 17

P. Zhang, Z. Marschner, J. Solomon, and R. Tamstorf. 2023. Sum-of-Squares Colli-
sion Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference

Proceedings (Los Angeles, CA, USA). ACM, New York, NY, USA, Article 76, 11 pages.
Z. Zhang, Y.-J. Chiang, and C. Yap. 2024. Theory and Explicit Design of a Path Planner

for an SE(3) Robot. arXiv:2407.05135 [cs.RO] https://arxiv.org/abs/2407.05135
Y. Zheng, H. Sun, X. Liu, H. Bao, and J. Huang. 2022. Economic Upper Bound Estimation

in Hausdorff Distance Computation for Triangle Meshes. Computer Graphics Forum

41, 1 (2022), 46–56.

A PRECISION IN THE DOMAIN OR IN THE RANGE?
Precision in the Domain. In Definition 3 we could define Φ𝜀 as

a region containing Φ with all the points within distance 𝜀 of Φ.
Similarly, in Definition 4 (assuming 𝛿 = 𝜀) the solution could be
defined as a volume 𝜎̃∗ ⊂ Σ of size at most 𝜀 in all its coordinates,
containing an inverse image of 𝐹 ∗ (multiple minima with value 𝐹 ∗

may exist in Φ). However, 𝐹 (𝜎̃∗) must be evaluated to explicitly
approximate 𝐹 ∗.

Although this approach simplifies the definitions and algorithms,
it provides limited information about the accuracy of the solutions
relative to the true feasible region and minimum. Requiring only
minor code modifications, we employ it in Section 6.2 solely for
comparison with [Chen et al. 2024] to comply with their choice.

Precision in the Range. As stated in Definition 3, the buffer region
Φ𝜀 depends on the𝐶𝑖 ’s and contains Φ but, other than that, its shape
is not directly related to the feasible region Φ. Instead, we impose an
explicit bound on how much the 𝐶𝑖 ’s may violate the constraints.

In Definition 4, having distinct thresholds 𝜀, 𝛿 is necessary because
in general neither the 𝐶𝑖 ’s nor 𝐹 can be evaluated exactly, and their
ranges are unrelated. If 𝜀𝑖 > 0 for at least one index 𝑖 , then we have
𝐹 ∗𝜀 ≤ 𝐹 ∗; the solution 𝐹 ∗ may span either or them, or both, or lie
between them, possibly shrinking to a singleton (see Figure 3). If
𝜀𝑖 = 0 at all 𝑖 , then 𝐹 ∗𝜀 = 𝐹 ∗ hence 𝐹 ∗ ∈ 𝐹 ∗.

If Φ has volume in Σ, the bounds on 𝐹 ∗ can be tightened as the
search shrinks around Φ even when 𝜀 = 0, and the solver can stop
as soon as the interval about 𝐹 ∗ is tight enough. On the other hand,
if Φ has measure zero in Σ (as in Figure 2 Right and Figure 4),
which is usually the case in the presence of equality constraints, it
may be impossible to decrease the bound on 𝐹 ∗ from above with
𝜀 = 0: the solver would indefinitely shrink the search about Φ
without converging, and only an additional termination condition
can provide an answer [Snyder 1992].

If all the 𝐶𝑖 ’s and 𝐹 are Lipschitz continuous, domain and range
precision are equivalent, differing only by their Lipschitz constants.
However, determining these constants and balancing domain toler-
ances can be challenging.

B DISCONTINUOUS FUNCTIONS
The concept of a convergent inclusion function can be extended to
discontinuous functions. For a multi-interval 𝐴 ∈ I𝑛 , a function
𝑓 (possibly discontinuous) defined on 𝐴, and a point 𝑝 ∈ 𝐴, an
inclusion function □𝑓 for 𝑓 is convergent if

lim
𝐴→{𝑝 }

□𝑓 (𝐴) = [lim inf
𝜉→𝑝

𝑓 (𝜉), lim sup
𝜉→𝑝

𝑓 (𝜉)],

If 𝑓 is continuous at 𝑝 , this definition is consistent with Definition 5.
However, if 𝑝 is a discontinuity, □𝑓 (𝐴) cannot shrink beyond the
jump of 𝑓 at 𝑝 .

If a discontinuity point 𝑝 is significant – e.g., 𝐹 has its minimum
at 𝑝 , or a constraint 𝐶𝑖 has a zero-spanning jump at 𝑝 – and the
jump is larger than the given thresholds 𝜀, 𝛿 , our algorithms will
halt after 𝐾max domain subdivisions around 𝑝 without reaching the
required precision. The returned result is still conservative, though.
This can also occur with continuous functions if 𝜀 and 𝛿 are too
small compared to the gradient of the constraint/objective functions.
In these cases, too many (possibly infinite) subdivisions would be
necessary to converge, and our algorithms would undergo an early
exit after a given maximum number of subdivisions 𝐾max. Indeed,
due to the inherent discretization of domain and range in floating-
point arithmetic, distinguishing between functions with extremely
high gradients and discontinuous functions becomes practically
impossible.

As discussed in Appendix A, we can alternatively define the
precision thresholds in the domain, rather than in the range. In this
case, the algorithms always converge, and the maximum level of
domain decomposition is defined by the thresholds themselves.

C INTERVAL ARITHMETIC
Interval arithmetic provides a set of operations on real intervals
I such that if 𝑥 ∈ 𝑎 = [𝑎, 𝑎] ∈ I and 𝑦 ∈ 𝑏 = [𝑏, 𝑏] ∈ I, then
𝑥 ★𝑦 ∈ 𝑎 ★𝑏, where ★ in the right-hand side is the interval version
of operation ★ on reals.

We employ interval arithmetic for two primary purposes:

(1) Interval Analysis: This is fundamental to our approach, uti-
lized consistently for tasks such as evaluating inclusion func-
tions.

(2) Rounding Error Handling: When the "conservative backend"
is selected, interval arithmetic is specifically employed to
account for the inherent imprecision of floating-point com-
putations. Here, all input values are initially represented as
singleton intervals (intervals with identical endpoints). Sub-
sequently, for each interval operation, the lower bound of
the result is rounded downwards, and the upper bound is
rounded upwards, ensuring an enclosure of the true result.

Our implementation leverages the Indirect_Predicates library
[Attene 2020]. The following operations and relations on intervals
are supported in MiSo:

−[𝑥, 𝑥] = [−𝑥,−𝑥]
[𝑥, 𝑥] + [𝑦,𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦]

[𝑥, 𝑥] [𝑦,𝑦] = [min(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦),max(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦)]
min([𝑥, 𝑥], [𝑦,𝑦]) = [min(𝑥,𝑦),min(𝑥,𝑦)]
max([𝑥, 𝑥], [𝑦,𝑦]) = [max(𝑥,𝑦),max(𝑥,𝑦)]

abs([𝑥, 𝑥]) =

[𝑥, 𝑥] if 𝑥 > 0
[−𝑥,−𝑥] if 𝑥 < 0
[0,max(−𝑥, 𝑥)] if 𝑥 ≤ 0 ≤ 𝑥

The division of an interval by an exact number different from
zero is also available, and it is a safe operation. The division between
intervals is permitted, but it should be avoided whenever possible,
as there is a risk of encountering a division by 0.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://arxiv.org/abs/2407.05135
https://arxiv.org/abs/2407.05135

18 • Federico Sichetti, Enrico Puppo, Zizhou Huang, Marco Attene, Denis Zorin, and Daniele Panozzo

Divisions are implemented as product of the dividend with the
reciprocal of the divisor; if the divisor contains 0, the computation
of the inverse will raise an exception by default. Because of the
conservative nature of our implementation, it is possible for this
exception to be encountered even when the true function does
not include zero, due to the overestimation of function ranges and
accumulated roundoff error. If this happens, it generally means that
the operation was unsafe to begin with, as it is nearly singular.

However, we provide a compilation flag that allows the user to
accept the risk and proceed with computations. When this flag
is enabled, the operation to compute the reciprocal of an interval
containing 0 will return [0,∞] if the left extreme is 0, [−∞, 0] if the
right extreme is 0, and [−∞,∞] otherwise. Floating point operations
involving∞ are handled by the NFG library as normal floating point
operations, but the results may contain NaNs for some combinations
of operands that contain infinite values and/or zeroes.

While infinite values are acceptable values for our algorithms,
handling potentially NaN values requires additional checks.

D POLYHEDRAL BOUNDING BOXES
The following program, used in Section 6.2, relies on the hyperplane
separation theorem: two convex objects are not intersecting if a
plane separating them exists, i.e., if their projections on the nor-
mal direction of such plane are disjoint. Using the three cardinal
directions of the Cartesian space only is equivalent to testing for
intersections between the AABB’s of the objects. We rather test
against 13 directions, including the various diagonals of coordinate
planes and octants; this is equivalent to enclosing the primitives
into tight polyhedra, each being the convex envelope of 26 planes
with fixed orientations. This is a compromise between using the
looser AABB’s and the tighter OBB’s, which are more expensive
to compute and test. The projections of the distance of the two
objects onto the normal directions of the faces of such polyhedra
are computed with the function PBB3D defined below.

This function accepts a 3D polynomial map as a list of PolyNodes.
The result is the projection of this map on the 13 axes

(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1), (1,−1, 0), (1, 0,−1), (0, 1,−1),

(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1) .

that is, a list of 13 expressions such that the inclusion function of
each of them encloses the projection of the geometric object on one
of the chosen axes.

1 with pymiso.Context () as miso:

2 def PBB3D(x):

3 v = miso.vector(

4 x[0],

5 x[1],

6 x[2],

7 x[0] + x[1],

8 x[0] + x[2],

9 x[1] + x[2],

10 x[0] - x[1],

11 x[0] - x[2],

12 x[1] - x[2],

13 x[0] + x[1] + x[2],

14 x[0] + x[1] - x[2],

15 x[0] - x[1] + x[2],

16 x[0] - x[1] - x[2])

17 return abs(v).max()

18 X = miso.variables (2)

19 Y = miso.variables (2)

20 T = miso.variables (1)

21 elem_a = miso.poly_space ((X, 3))

22 elem_b = miso.poly_space ((Y, 3))

23 pb = miso.bases.LAGRANGE

24 xa0 = elem_a.geo_map(pb, 3)

25 xa1 = elem_a.geo_map(pb, 3)

26 xb0 = elem_b.geo_map(pb, 3)

27 xb1 = elem_b.geo_map(pb, 3)

28 xa = ((xa0 * (1-T)) + (xa1 * T)).collapse ()

29 xb = ((xb0 * (1-T)) + (xb1 * T)).collapse ()

30 dist = PBB(xb-xa)

31 sd = [miso.subdiv_strategy (), miso.subdiv_strategy(T)]

32 miso.generate('./src/generated ', 'CubicTriCCD ', dist , objective=T, strategies

=sd)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Explicit Root Finding
	2.2 Sum Of Squares Polynomials
	2.3 Inclusion-Based
	2.4 DSL in Graphics

	3 Overview
	3.1 Problem statement
	3.2 How MiSo Works
	3.3 Didactic Example: Line-Surface Intersection

	4 Algorithms
	4.1 Problem Domain and Decomposition
	4.2 Inclusion Functions
	4.3 Pseudocode

	5 Implementation
	5.1 Symbols
	5.2 Expressions
	5.3 Evaluating Inclusion Functions
	5.4 Domain Decomposition
	5.5 The MiSo Compiler

	6 Applications
	6.1 Static Objects Intersections
	6.2 Dynamic Objects Intersections
	6.3 Collapsing the Expression
	6.4 Implicit Booleans
	6.5 Minimal Distance
	6.6 Geometrical Validity Check
	6.7 Compilation Time

	7 Conclusions
	Acknowledgments
	References
	A Precision in the domain or in the range?
	B Discontinuous functions
	C Interval arithmetic
	D Polyhedral bounding boxes

