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Abstract

For well-composed (manifold) objects in the 3D cubical grid, the Euler char-
acteristic is equal to half of the Euler characteristic of the object boundary,
which in turn is equal to the number of boundary vertices minus the number
of boundary faces. We extend this formula to arbitrary objects, not nec-
essarily well-composed, by adjusting the count of boundary cells both for
vertex- and for face-adjacency. We prove the correctness of our approach by
constructing two well-composed polyhedral complexes homotopy equivalent
to the given object with the two adjacencies. The proposed formulas for the
computation of the Euler characteristic are simple, easy to implement and
efficient. Experiments show that our formulas are faster to evaluate than
the volume-based ones on realistic inputs, and are faster than the classical
surface-based formulas.

Keywords: Digital topology, Cubical grid, Euler characteristic, Discrete
Gauss-Bonnet theorem

1. Introduction

The Euler characteristic is a global topological descriptor of a 3D object
O. Intuitively, it is equal to the number of connected components minus the
number of tunnels plus the number of cavities [18]. When O is a digital ob-
ject, made up of voxels in the cubical grid, an appropriate adjacency relation
must be considered for voxels in O (i.e., vertex-, edge- or face-adjacency)
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in order to define its Euler characteristic and Betti numbers. The Euler
characteristic of O (with vertex-adjacency), and of its boundary ∂O, can be
computed locally by counting the number of cells of all dimensions in O and
in ∂O, respectively, and taking their alternating sum.

A 3D digital object O is well-composed if the set |O|, the union of all
voxels in O as a point set, is a 3-manifold (with boundary); in this case, its
boundary |∂O| is a 2-manifold without boundary. The value of the Euler
characteristic of a well-composed object does not depend on the chosen
adjacency (vertex- or face-adjacency); for such objects it is equal to half the
Euler characteristic of the object boundary [8, 15, 22, 26], which in turn,
from the discrete Gauss-Bonnet theorem [1], can be computed as c∗0 − c∗2,
where c∗0 is the number of vertices and c∗2 is the number of faces in ∂O.

We extend this flowchart (i.e., χ(O) = (c∗0 − c∗2)/2) from well-composed
to arbitrary non-well-composed 3D objects, with respect to both vertex- and
face-adjacency, by counting those boundary vertices in ∂O, at which the
object is not well-composed, an appropriate number of times. We prove
the correctness of our formulas. As a byproduct, we obtain a geometric
construction that builds two well-composed polyhedral complexes homotopy
equivalent to O with the two (vertex- and face-) adjacencies. Experiments
show that our formulas, which count only vertices and faces in ∂O, can be
evaluated faster than both the volume-based ones, and the other surface-
based formulas, which count all cells in O and in ∂O, respectively.

2. Preliminaries

We give some basic notions on 3D digital topology and well-composed
objects, the Euler characteristic, the discrete Gauss-Bonnet theorem and its
use in the computation of the Euler characteristic.

2.1. The Cubical Grid

The 3D cubical grid is a tessellation of R3 into closed unit cubes (called
voxels) centered at points in Z3, with faces parallel to the coordinate planes
[17]. Two voxels are face-, edge- or vertex-adjacent (a.k.a. 6-, 18- or 26-
adjacent) if they share at least one face, edge or vertex, respectively. They
are strictly vertex-adjacent (edge-adjacent) if they share exactly one vertex
(edge).

An object O is a finite set of voxels in the cubical grid. The voxels in
O are called black (object) voxels; those in the complement of O are called
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white (background). Although mathematically the cubical grid is infinite,
a finite subset Σ of it is considered, namely a parallelepiped containing O
plus at least one layer of additional white voxels in each of the six cardinal
directions (i.e., such that the object O does not touch the border of Σ). The
complement Oc of O is considered within Σ, and therefore both Oc and O
are finite sets.

Two voxels in O are connected (with respect to the chosen adjacency α) if
there is a path, composed of voxels in O, starting at one of them and ending
at the other, such that any two consecutive voxels in the path are adjacent
with respect to α. Connected components of O are the maximal connected
subsets of O (with respect to the chosen adjacency). We are interested in
objects with vertex- and face-adjacency. If the object is considered with
vertex-adjacency, its complement is considered with face-adjacency, and vice
versa.

The cubical complex naturally associated with O with respect to vertex-
adjacency is composed of all voxels in O, and all their faces, edges and vertices
(called cells). With abuse of notation, in the rest of the paper we will use the
same letter O to denote the associated complex as well. So, depending on
the context, O will denote the set of voxels, or the set of cells of dimensions
0,1,2,3.

The dual complex Od of O is a cubical complex which has a vertex for
each voxel in O, an edge for each pair of face-adjacent voxels in O, a face
for each four voxels in O sharing a common edge and a voxel for each eight
voxels in O sharing a common vertex.

The underlying space |O| of O is the set of all points contained in some
cell in O. The boundary ∂O of O is the complex composed of the faces in
O incident to exactly one black voxel, and all their edges and vertices. The
topological boundary of O is the underlying space |∂O| of ∂O.

A vertex v is called critical if it is incident to exactly two black voxels, or
exactly two white voxels, and such two voxels intersect only at v (i.e., they
have no common edge or face). An edge e is called critical if it is incident
to exactly two black voxels, or exactly two white voxels, and such two voxels
intersect only at e and at its two endpoint (i.e., they have no common face).

A 3D object O is well-composed [20] if

• |O| is a 3-manifold with 2-manifold boundary |∂O|, or, equivalently [5],

• O contains no critical vertex or edge (i.e., none of the critical configu-
rations illustrated in Figure 1).
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Well-composedness is a desirable property for 3D objects. Discrete ge-
ometry algorithms, like computation of the distance transform, thinning, or
surface tracing, as well as multigrid convergence of some geometric estima-
tors, are faster when applied on well-composed objects. As for applications
in geometric modeling and computer graphics, well-composedness allows for
implementation of surface parametrization and texture mapping on the ob-
ject boundary. P: Unfortunately, most real objects, coming from scanning or
from discretization of CAD models, are not well-composed.

2.2. The Euler Characteristic

The Euler characteristic is a basic integer-valued topological (homotopi-
cal) invariant, extensively used in many application domains. For a 3D well-
composed object O, the value of χ(O) is the same with both the vertex- and
the face-adjacency models. For an object which is not well-composed, the
value of its Euler characteristic χ(O) depends on the chosen adjacency rela-
tion. We will use the symbols χv and χf to denote the Euler characteristic
according to vertex- and face-adjacency, respectively. The symbol χ will be
used when there is no need to distinguish between the two cases. The Euler
characteristic can be defined in several equivalent ways. Here, we consider
only two:

• through the Betti numbers of O [18] (intuitively, the number β0 of
components, β1 of tunnels and β2 of cavities) as

χ(O) = β0 − β1 + β2,

• through the number of cells in some complexes associated with O

– (for vertex-adjacency) through the number c0 of vertices, c1 of
edges, c2 of faces and c3 of voxels in O as

χv(O) = c0 − c1 + c2 − c3. (1)

– (for face-adjacency) [28, 30] through the number b0 of vertices, b1
of edges, b2 of faces and b3 of voxels in the dual complex Od as

χf (O) = b0 − b1 + b2 − b3. (2)

Equivalently [28],
χf (O) = χv(O

c)− 1. (3)

4



Given an object O (well-composed or not), the Euler characteristic χ(∂O)
of the boundary ∂O (with vertex-adjacency between the faces) can be com-
puted through the number c∗0 of boundary vertices, c∗1 of boundary edges and
c∗2 of boundary faces as

χ(∂O) = c∗0 − c∗1 + c∗2. (4)

For well-composed objects, there is a connection between the Euler charac-
teristic of O and the Euler characteristic of its boundary ∂O [26] (Proposition
5.4.15) namely

χ(O) = χ(∂O)/2. (5)

2.3. The Discrete Gauss-Bonnet Theorem

The (continuous) Gauss-Bonnet theorem gives a connection between the
Gaussian curvature on a manifold and its topology expressed through its
Euler characteristic. It states that∫

M

KGdA = 2πχ(M),

where M is a closed 2-manifold, KG is its Gaussian curvature and the integral
is a surface integral over M [29].

The famous Descartes theorem gives a connection between the angles
of the faces of a polyhedron P and its topology. It states that, if P is
homeomorphic to the unit 2-sphere S2, then∑

v∈P

δ(v) = 4π = 2πχ(S2),

where v is a vertex of P , and the angular deficit δ(v) is the amount by which
the sum of the face angles at v differs from 2π, i.e.,

δ(v) = 2π −
∑
f3v

α(v, f),

where f are the faces of P incident to the vertex v, and α(v, f) is the internal
angle of f at v.

The discrete version of the Gauss-Bonnet theorem extends the theorem
of Descartes to (manifold) polyhedra. It states that∑

v∈P

δ(v) = 2πχ(P ),
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where P is the given polyhedron and v are the vertices of P [19]. Intuitively,
the Gaussian curvature in the interior of the faces and edges of P is equal to
zero. The curvature is concentrated at the vertices of P , and is equal to the
vertex deficit.

2.4. The Discrete Gauss-Bonnet Theorem in the Computation of the Euler
Characteristic of Well-Composed Objects

The Gauss-Bonnet theorem leads to an efficient way to compute the Euler
characteristic of well-composed objects in the cubical grid. For such objects,
from (4) and (5), we have

χ(O) = χ(∂O)/2 = (c∗0 − c∗1 + c∗2)/2.

As the boundary of a well-composed object O is a polyhedron, χ(∂O) can
be computed through the discrete Gauss-Bonnet theorem as

2πχ(∂O) =
∑

v∈∂O
δ(v) =

∑
v∈∂O

(2π −
∑
f3v

α(v, f)) =

=
∑

v∈∂O
2π −

∑
v∈∂O

∑
f3v

α(v, f) = 2πc∗0 −
∑

f∈∂O

∑
v∈f

α(v, f)

= 2πc∗0 − 2πc∗2

exploiting the fact that faces are squares and the sum of their internal angles
is 2π. Thus

χ(∂O) = c∗0 − c∗2. (6)

The same formula was obtained by Françon [12] in the context of discrete
combinatorial (manifold) surfaces, from (4) and 4c∗2 = 2c∗1 (each boundary
face is incident to four edges, and each (manifold) boundary edge is incident
to two boundary faces). We will apply this formula to arbitrary objects,
manifold or not, (with an appropriate modification for counting the boundary
vertices depending on the chosen adjacency relation).

3. Related Work

Many algorithms have been proposed for the computation of the Euler
characteristic in the 3D cubical grid. The algorithms can be classified ac-
cording to various criteria:

• the type of adjacency (vertex [2, 18, 19, 24, 28, 31, 32, 39], face [3, 7, 9,
12, 24, 25, 28, 30, 33, 35, 38], or all three types of adjacency [23, 37]),
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• the shape of the image (well-composed [7, 9, 12, 27, 33, 35] or not
[3, 24, 25, 38]),

• the set of cells processed by the algorithm (only border cells [16, 21,
24, 25], or all cells, including the interior ones [2, 3, 7, 18, 19, 30, 31,
32, 33, 35, 37, 38, 39]),

• the processed complex (the given one [2, 3, 9, 16, 18, 19, 21, 25, 31, 32,
37, 39], or its dual [7, 28, 30, 33, 35, 37, 38]),

• the adopted definition of the Euler characteristic (the alternating sum
of the number of i-cells [12, 18, 19, 24, 25, 30, 37, 38, 39], the alternating
sum of the Betti numbers [31, 32]),

• the use of a compressed data structure for storing the image (run-length
encoding [23], or bintree [2]),

• the theoretical basis of the algorithm (winding number and Morse the-
ory [21] or discrete Gauss-Bonnet theorem, either directly [9] or by
introducing the notion of the curvature index of the vertices in the
boundary [16]).

We call volume-based approaches those considering all cells in O; we
call surface-based the ones involving only the cells in ∂O. We restrict our
attention to methods having some relation with ours, i.e., those which use a
surface-based approach on arbitrary objects (not necessarily well-composed)
and those based on the discrete Gauss-Bonnet theorem.

The algorithms [24, 25] that compute the Euler characteristic of an arbi-
trary object O by counting the cells in ∂O (equation (4)) adjust the vertex
and edge count for non-manifold configurations to get a correct result for
face-adjacency. P: [not here, in section 6] [DELETE These algorithms are
slower than ours, because they count edges as well.]

The discrete Gauss-Bonnet theorem has been used for well-composed ob-
jects. Chen and Rong [9] apply the discrete Gauss-Bonnet theorem to con-
nected manifold objects with no cavities. The number of vertices incident
to k boundary faces is denoted mk, 3 ≤ k ≤ 6. Since each boundary face is
a square, and each face angle is π/2, the deficit of each boundary vertex v
incident to k boundary faces, 3 ≤ k ≤ 6, is δ(v) = 2π − kπ/2. The discrete
Gauss-Bonnet theorem implies that

χ(∂O) = (m3 −m5 − 2m6)/4.
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Imiya and Eckhardt [16] use the same formula, which they obtain through a
finer classification of the boundary vertices.

Lee at al. [21] proposed an algorithm for arbitrary objects, based on
smoothing the voxels (slightly inflating them and rounding the corners and
edges) and applying the continuous Gauss-Bonnet theorem. The proposed
algorithm can handle objects with vertex- and face-adjacency (by considering
the complement of the object). It reduces to using a look-up table with vertex
contributions to χ(O) for each possible configuration of 2×2×2 cubes incident
to the vertex.

In Section 6, we will compare experimentally our formula with one repre-
sentative of the volume-based approach and one representative of the surface-
based approach. The former will be a modified Equation (1), which is also
used in [37, 39]. The latter will be the formula used by Lozano-Durán and
Borrell [25].

4. The Proposed Formulas

We compute the Euler characteristic χ(O) of an object O through the
Euler characteristic χ(∂O) of its boundary ∂O as χ(O) = χ(∂O)/2 with
χ(∂O) in turn computed as χ(∂O) = c∗0 − c∗2 (see Equations (5) and (6),
respectively). For well-composed objects, this is the known formula. For
arbitrary objects, we adjust the count of the number c∗0 of boundary vertices
to get the correct result, maintaining the duality between one adjacency
for black voxels and the opposite adjacency for white ones, as described by
Equation (3).

For computing both χv and χf , manifold (non-critical) vertices are counted
once. Non-manifold vertices are in one of the eleven critical configurations
shown in Figure 1.

Vertex adjacency. Our modified Equation (4) for an object O with vertex-
adjacency is

χv = c∗v0 − c∗2 (7)

where the symbol c∗v0 denotes the number of boundary vertices, counting each
non-manifold boundary vertex as many times as there are face-connected
components of white voxels incident to it, with the exception of the critical
vertices incident to two strictly vertex-adjacent black voxels (and six white
ones), which are not counted. Referring to Figure 1, the central vertex is
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H1
2

p v : 1
f : 2

H2
2

p v : 0
f : 2

H1
3

p v : 1
f : 2

H2
3

p v : 2
f : 3

H1
6

p v : 2
f : 1

H2
6

p v : 2
f : 0

H1
5

p v : 2
f : 1

H2
5

p v : 3
f : 2

H1
4

p v : 2
f : 2

H2
4

p v : 2
f : 2

H3
4

p v : 4
f : 4

1

Figure 1: In the first column, the possible configurations (up to rotation and symmetry)
of black voxels around a non-manifold boundary vertex. In notation Hp

k , k denotes the
number of black voxels, and p is an index discriminating the configurations with the same
number of black voxels. The second column reports how many times the central vertex is
counted with vertex-adjacency (v:) and face-adjacency (f :). The configurations Hk and
H8−k, with the same superscript, are mutually dual and are shown on the same line. The
last two columns show polyhedra Pv and Pf used in the proof of correctness. For clarity,
the images show only polyhedra associated with cells incident to the central vertex (the
octahedra corresponding to other vertices are not shown).
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counted once in configurations H1
2 and H1

3 , three times in H2
5 , four times in

H3
4 , zero times in H2

2 and two times in the remaining configurations.

Face adjacency. Our modified Equation (4) for an objectO with face-adjacency
is

χf = c∗f0 − c∗2 (8)

where the symbol c∗f0 denotes the number of boundary vertices, counting
each non-manifold boundary vertex as many times as the number of face-
connected components of black voxels incident to it, with the exception of
the critical vertices incident to two strictly vertex-adjacent white voxels (and
six black ones), which are not counted. In Figure 1, the central vertex is
counted once in configurations H1

5 and H1
6 , three times in H2

3 , four times in
H3

4 , zero times in H2
6 and two times in the remaining configurations.

5. The Proof of Correctness

We give a formal proof that our formulas correctly compute the Euler
characteristic with vertex- or face-adjacency. As a byproduct of the proof, we
obtain a geometric construction, which transforms an object O in the cubical
grid into two well-composed polyhedra Pv and Pf , homotopy equivalent to O
with vertex- and face-adjacency, respectively. We describe the construction of
the two polyhedra, we prove their well-composedness, we show the homotopy
equivalence, and we show that the alternating sum of boundary cells in Pv

and Pf (i.e., their Euler characteristic) is equal to the count c∗v0 − c∗2 and

c∗f0 − c∗2, respectively (i.e., counting c∗0 with appropriate multiplicities for
non-manifold vertices), as in our formulas (7) and (8).

5.1. Construction of the Polyhedra Pv and Pf

The constructions of the two polyhedra Pv and Pf from the object O with
vertex- and face-adjacency, respectively, are dual: Pv is obtained by applying
to white voxels the same construction that produces Pf if applied on black
ones and vice versa.

For an arbitrary length a, with 0 < a <
√

2/2, we associate an octahedron
with each vertex v, centered at v, with vertices on the coordinate axes through
v, and triangular faces of side a.

We associate a square prism with each edge e, with square bases of side
a in the axis-orthogonal planes through the endpoints of e, and with vertices
on the coordinate axes through the endpoints.
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Figure 2: From left to right: an object O and polyhedra Pv and Pf .

Vertex-Adjacency. We construct the polyhedron Pv by thickening O at all
non-manifold edges and vertices.

• For each central vertex v of a critical configuration, we add the octa-
hedron associated with v, i.e., we add the tetrahedra corresponding to
the parts of the octahedron inside each white voxel incident to v.

• For each critical edge e, we add the prism associated with e, i.e., we
add the triangular prisms corresponding to the parts of that prism lying
inside each white voxel incident to e.

Face-Adjacency. We construct the polyhedron Pf by disconnecting O at all
non-manifold edges and vertices.

• For each central vertex v of a critical configuration, we remove the
octahedron associated with v, i.e., we truncate each black voxel incident
to v, by removing the part (a tetrahedron) of the octahedron inside that
voxel.

• For each critical edge e, we remove the prism associated with e, i.e.,
we truncate each black voxel incident to e by removing the part (a
triangular prism) of the square prism inside that voxel.

In both cases, we remove and add the tetrahedra and prisms as point sets, and
then we subdivide the boundaries of the obtained polyhedra in the obvious
manner. This construction is illustrated in Figure 2, and the result for each
of the eleven critical configurations is illustrated in Figure 1.
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(a) (b) (c)

Figure 3: Construction of the deformation retraction (homotopy) from the polyhedron Pv

onto the object O.

5.2. Well-Composedness

Proposition 1. The (underlying spaces of the) polyhedra Pv and Pf are 3-
manifolds, with 2-manifold boundaries (i.e., they are well-composed).

proof. The parts of the polyhedra that coincide with the given object O
are manifold, because the construction affects only the neighborhood of non-
manifold vertices and edges in O (their 1/2-neighborhood, i.e., the set of
points at distance less than 1/2 from such vertices or edges). The mani-
foldness of the polyhedra in these neighborhoods follows from inspecting the
polyhedra (see Figure 1), and from the choice of a (0 < a <

√
2/2), which

prevents the vertices and edges of the added / deleted octahedra and prisms
from becoming non-manifold.

5.3. Homotopy Equivalence

Proposition 2. The polyhedron Pv is homotopy equivalent to the object O
with vertex-adjacency.

proof. We construct a map that pushes in the protruding parts of Pv (tetra-
hedra and prisms) onto O.

• We barycentrically subdivide each equilateral triangle in ∂Pv, and we
map the center of each triangle and the center of each of its protruding
edges on the center v of the corresponding octahedron (see Figure 3(a)).
In H1

2 we map only the protruding vertex of the octahedron to v (see
Figure 3(b)).
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• We introduce the midline l (parallel to the corresponding critical edge
e) into faces in ∂Pv originating from prisms, and we map l linearly
onto e (see Figure 3(b)). For H1

5 and H1
6 , to avoid discontinuities, we

introduce first a point p on l at distance e.g. a from the center v of the
critical configuration, we map p to v and we map linearly the part of l
away from v onto e (see Figure 3(c)).

• We extend these maps linearly to the rest of the protruding parts of
Pv.

This map is well-defined: each vertex in Pv has a unique image (since a <√
2/2). It is continuous, and induces a homotopy (a deformation retraction)

between Pv and O.

The homotopy equivalence of Pf to O with face-adjacency follows by duality.
The two polyhedra Pv and Pf can be seen as two repaired versions of the

given object O, with vertex- and face-adjacency, respectively. Object repair-
ing is the process of transforming a given object O into another one, which
is well-composed and similar, in some way, to O. Homotopy equivalence can
be one of the requirements for such similarity. There is a wide literature
on image repairing in the cubical grid. Some repairing methods produce a
well-composed object which is still cubical [34, 36], others produce a more
general polyhedral object [10, 11, 13, 14]. It is worthwhile to analyse the
possible advantages of a use of polyhedra Pv and Pf in repairing (this would
give a method belonging to the second class), but it is out of the scope of
the present paper.

5.4. Correctness of the formulas

Proposition 3. Formula (7) correctly computes the Euler characteristic of
a given object O with vertex-adjacency and of its boundary ∂O.

proof. We compute the contribution of each (central) vertex v to the sum
c∗0 − c∗2 in ∂O, as in formula (7). We also compute the contribution of the
corresponding part of ∂Pv to the sum d∗0 − d∗1 + d∗2 in ∂Pv (the star denotes
boundary cells; c are cells in ∂O, d are cells in ∂Pv). We count each (man-
ifold) vertex in ∂Pv once, for each vertex we count each incident edge 1/2
times, and for each vertex we count each incident k-gon 1/k times; the rest
of the edges and faces are counted with the remaining incident vertices. The
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v

1

Figure 4: Illustration of the proof of correctness for configuration H1
4 : the object O (left)

and the polyhedron Pv (right). In Pv, v has been replaced by four vertices, only two of
them are visible in the image.

two contributions, shown in Table 1, are equal for each of the possible config-
urations in Figure 1, implying that the quantity c∗0−c∗2 computed by Formula
(7) is equal to χ(∂Pv). The correctness of the formula follows from homotopy
equivalence.

We give details for the case H1
4 (see Figure 4); the remaining cases can be

derived in a similar manner. We denote by ∆ci and ∆di the contributions of
the critical vertex to the numbers ci and di, respectively, which are summed
up to compute the Euler characteristic. In H1

4 , the central vertex v is counted
two times in ∂O (∆c∗0 = 2), because v is non-manifold and incident to two
face-connected components of white voxels. The vertex v is incident to eight
squares, and we count 1/4 of each square (∆c∗2 = 2). Thus, ∆(c∗0 − c∗2) = 0.

In ∂Pv, the central vertex v is transformed to four vertices (∆d∗0 = 4).
Each of them is incident to four edges in ∂Pv (two edges parallel to a critical
edge incident to v, one edge of length a, and one originating in a non-critical
edge in ∂O). We count each of these edges 1/2 times (∆d∗1 = 8). Each of the
four vertices is incident to four rectangular faces in ∂Pv (two originating from
the prisms, and the other two from the squares in ∂O). Each of the faces is
counted 1/4 times (∆d∗2 = 4). Thus, ∆(d∗0 − d∗1 + d∗2) = 0 = ∆(c∗0 − c∗2).

The correctness of Formula (8) follows by duality.

6. Experiments

We compare our proposed formulas with the ones at the state of the art.

6.1. Implementation

We have implemented and tested the following formulas for computing
the Euler characteristic of an object O in the cubical grid:
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Table 1: Local cell count for the computation of χ(∂O) with our rules for the configu-
rations in Figure 1, and for χ(∂Pv) with the usual formula valid for 2-manifolds for the
corresponding polyhedra.

c∗0 c∗2 c∗0 − c∗2 d∗0 d∗1 d∗2 d∗0 − d∗1 + d∗2
H1

2 1 3/2 −1/2 5 12 13/2 −1/2
H2

2 0 3/2 −3/2 6 15 15/2 −3/2
H1

3 1 7/4 −3/4 5 23/2 23/4 −3/4
H2

3 2 9/4 −1/4 7 27/2 25/4 −1/4
H1

4 2 2 0 4 8 4 0
H2

4 2 2 0 5 10 5 0
H3

4 4 3 1 16 24 9 1
H1

5 2 7/4 1/4 5 17/2 15/4 1/4
H2

5 3 9/4 3/4 6 21/2 21/4 3/4
H1

6 2 3/2 1/2 4 6 5/2 1/2
H2

6 2 3/2 1/2 6 9 7/2 1/2

VOL Equation (1), i.e., the alternating sum of the number of vertices, edges,
faces and voxels, computed on O. As used in [37, 39], this formula
applies for vertex- or face-adjacency. For face-adjacency, c1 counts
each non-manifold edge twice; c0 counts each vertex v as many times
as the number of face-connected black components within the eight
voxels incident in v, with the exception of a critical vertex v incident
to two strictly vertex-adjacent white voxels (H2

6 in Figure 1), which
is not counted. We denote as cf0 and cf1 such adjusted values. So,
VOL splits into two formulas VOLv and VOLf , for vertex- and face-
adjacency, respectively. By Equation (1), VOLv = c0 − c1 + c2 − c3,
while VOLf = cf0 − c

f
1 + c2 − c3.

LDB Equation (4), i.e., the alternating sum of the number of boundary ver-
tices, edges and faces, computed on ∂O. This formula applies for face-
adjacency, as used in [25], with adjusted value of c∗0 and c∗1. Each critical
edge is counted twice. Here, we count critical vertices incident to six
black and two strictly vertex-adjacent white voxels zero times, while in
[25] they seem to be counted twice (but then configuration H2

6 would
get wrongly χ(∂O) = 26 − 48 + 24 = 2). With this modification, the
computation of c∗0 is the same as c∗f0 in our approach for face-adjacency.
So, LDB can be written as c∗f0 − c

∗f
1 + c∗2.
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OUR Equation (6) based on discrete Gauss-Bonnet theorem, i.e., the alter-
nating sum of the number of boundary vertices and faces, computed on
∂O. Our proposed Formulas apply (6) with adjusted value of c∗0, i.e.,
c∗v0 and c∗f0 for vertex- and face-adjacency, respectively. Thus, OUR
splits into two formulas: OURv, i.e., Equation (7) for vertex-adjacency,
and OURf , i.e., Equation (8) for face-adjacency.

In order to provide a program for Euler computation, formulas have to
be inserted into an algorithm. Details of the algorithm, such as the approach
used to scan the grid containing the object, and optimizations, such as the
use of look-up tables, have a strong impact on the performance.

Exploiting the fact that the black/white status of the 2 × 2 × 2 voxels
incident to a vertex can be encoded in an 8-bit mask, many proposed algo-
rithms use a look-up table with 28 = 256 entries, containing the contribution
to χ of each vertex configuration.

This optimization is used in [37] and in [25] (the latter using three look-up
tables, which could be reduced to one), and it can be used in our approach as
well, in the following way. For each configuration of 2× 2× 2 cubes, we can
store the difference of the vertex count (1 for manifold boundary vertices,
the number in Figure 1 for non-manifold boundary vertices, and 0 for all
other vertices), minus a face count equal to 1

4
the number of boundary faces

incident to the vertex (as the same face is counted with its four vertices).
In order to keep integer values, we can store this number multiplied by four,
the algorithm will compute 4χ and divide it by four at the end.

By using a look-up table, all formulas will compute χ as the sum of
the values found in the table, for each vertex existing in the input image,
and therefore the mathematical part of the computation will take the same
time. The actual running time of each algorithm will then be determined
by the strategy used to scan vertex configurations. The simplest way is a
sequential scan of all 2× 2× 2 configurations in the grid Σ. Note that some
configurations have an entry equal to zero (i.e., they do not contribute to
the Euler characteristic). Volume-based methods will benefit from scanning
techniques visiting configurations with black cubes only (possibly organized
in runs or trees). Surface-based methods will benefit from a knowledge of
the object boundary (e.g., in the form of a contour code).

Considering the best possible solution, where only configurations con-
tributing to χ are visited, the computational time complexity of the volume-
based approach (VOL) is linear in the number c3 of black voxels, as it iterates
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Table 2: Running times (in milliseconds) of VOL, LDB, and OUR on Solid block (the best
case, a block of N3 black voxels), and Chessboard (the worst case, a three-dimensional
chessboard of side N). Both inputs are for N = 64, 128, 256, 512.

N c3 VOLv VOLf LDB OURv OURf

Solid 64 262,144 406 486 118 79 98
box 128 2,097,152 3,233 3,868 623 472 471

256 16,777,216 25,907 30,953 3,825 3,212 3,200
512 134,217,728 216,645 257,210 33,754 31,241 31,249

Chess- 64 131,072 228 321 473 246 246
board 128 1,048,576 1,828 2,555 3,760 1,951 1,953

256 8,388,608 14,673 20,444 30,150 15,637 15,670
512 67,108,864 126,878 171,086 249,301 133,646 134,037

on all black voxels. That of the surface-based approach (LDB and OUR),
instead, is linear in the number of black cubes having some face (from 1 to
6 faces) on the boundary, which has the same order of magnitude as the
number c∗2 of square faces shared by a black and a white voxel (boundary
faces).

Here, we want to compare just the used formula, not the algorithmic
setting surrounding it. Therefore, we adopt a simple scan of all black cubes.
From them, we access faces, edges, and vertices, as required by the specific
formula (VOL, LDB or OUR). We use marks to avoid counting twice the
same face, edge or vertex. We use a look-up table only to store the number
of times a vertex should be counted, equally in VOL, LDB, and OUR.

6.2. Experimental results

Algorithms have been implemented in C language and executed on a
PC equipped with an Intel CPU i7-2600K CPU at 3.4 Gigahertz with 32
Gigabytes of RAM. They have been run ten times on each input, taking the
smallest execution time.

Before describing the experiments, we introduce the ratio r = c∗2/c3, that
will be used in the analysis of the results. We expect that r, expressing the
size of the boundary surface over the size of the volumetric object, will impact
on the relative performance of surface-based methods (LDB and OUR) and
volume-based ones (VOL). In order to analyze the performance in limit cases,
we first considered two synthetic objects, corresponding to the maximum and
minimum ratio r. Solid box is a block of N3 black voxels and is the best case,
having the largest volume and the smallest boundary surface. The number of
boundary faces is c∗2 = 6N2, and r = 6/N decreases while increasing N . The
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object is well-composed and homeomorphic to a ball, the Euler characteristic
is χ = 1. Chessboard is a three-dimensional chessboard of edge N . This is
the worst case, having the smallest volume and the largest boundary surface.
There are N3/2 black voxels (for even N , as it is in our experiments), and
all their faces lie on the boundary, r = 6. The object is not well-composed.
With vertex-adjacency, there is a single connected component and (N −
2)3/2 cavities, thus the Euler characteristic is 1 + (N − 2)3/2. With face-
adjacency, each black voxel is a connected component on its own, and the
Euler characteristic is N3/2.

These two synthetic objects have been generated with N = 64, 128,
256, 512, and Table 2 shows the running times for computing the Euler
characteristic with each of them. The performance of OUR on real inputs
will be between such two limit cases.

The version of VOL with vertex-adjacency is always faster than the
one with face-adjacency, as it does not require a special processing of non-
manifold vertices. For OUR, the two versions have no relevant difference in
execution time. As expected, on Solid box the surface-based approach to Eu-
ler computation (LDB and OUR) clearly outperforms the volume-based one
(VOL), because it counts fewer cells. For solid box, OUR is 5 to 9 times faster
than VOL with the corresponding adjacency type; OUR with face-adjacency
is 1.08 to 1.3 times faster than LDB.

Conversely, on Chessboard the volume-based approach with vertex-adja-
cency is the fastest one. Here, every configuration of 2 × 2 × 2 cubes in Σ
is on the boundary. Differences in running times depend on the time for
evaluating the used formula (i.e., for accessing faces, edges and vertices to
be counted). With vertex-adjacency, the volume-based approach is faster
than OUR, while with face-adjacency OUR is still faster than VOL. Ratios
between execution times with the two approaches are smaller here, ranging
from 0.9 to 1.3. LDB is the slowest one, taking a bit less than twice the
running time of OUR with face-adjacency. P: This is due to the fact that
LDB has to count edges as well.

We executed VOL, LDB and OUR on two realistic test sets. The first
one, called Shapes, consists of about one hundred objects derived from shapes
present in the Digital Shape Workbench1. The original shapes were in vector
format, either as tetrahedral meshes, or as triangle meshes (defining oriented

1http://visionair.ge.imati.cnr.it/ontologies/shapes/
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1

Figure 5: Some of the test shapes that have been discretized on a cubical grid.

1

N = 64 N = 128 N = 256

Figure 6: A test shape and details of its discretizations for N = 64, 128, 256. The given
shape has very thin walls and the lowest resolutions are not sufficient for a correct discrete
representation.
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Figure 7: Some of the inputs obtained from Perlin noise, gray levels in the indicated
intervals have been considered as black.

closed surfaces). Some examples are shown in Figure 5. We superimposed a
cubical grid of N3 voxels and marked a voxel as black if its center falls inside
the volume covered by the tetrahedral mesh, or bounded by the triangle mesh.
Discretizations have been performed with N = 64, 128, 256, 512. For a fixed
shape, r halves when we double the grid size N (c3 is roughly multiplied by
8, c∗2 by 4). The resulting objects are generally not well-composed, and their
Euler characteristic may not coincide with that of the original shape, due to
the limited resolution (parts may be disconnected, holes closed, connected
components merged, etc.). Examples of discretizations are shown in Figure
6. The value of the ratio r is between 0.02 and 2.7.

The second test set, called Perlin, is obtained from a gray-scale 3D image
representing Perlin noise2 on a grid of size N = 256, with gray levels from 0
to 255. From it, we obtained 20 objects by selecting ranges of values to be
black (some examples are shown in Figure 7). Such objects, that we will refer
to as first group, are near to the worst case, with ratio r between 2.7 and 5.4
(i.e., greater than in test set Shapes and near to the maximum r = 6 achieved
by Chessboard). Another 20 objects, that we will refer to as second group,
have been obtained by selecting just 1/8 of each object of the first group,
and replacing each black voxel with a block of eight black voxels. This gives
a comparable number of black voxels (because of the uniform structure of
Perlin noise), and about half the number of faces. Thus the values of r in the
second group are about half of those in the first group, and they range from

2https://www.thingiverse.com/thing:27229
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Shapes Perlin

1

Figure 8: Running times of VOL, LDB, and OUR on the two test sets Shapes and Perlin.
The horizontal axis is the number c3 of black voxels, the vertical axis is execution time in
milliseconds. For Perlin, the two curves correspond to the two groups of inputs. See text
for comments.

1.3 to 2.7. All objects in test set Perlin have many connected components,
tunnels and cavities (in the order of 102 or 103).

On all objects, χ(∂O) computed by OUR is exactly twice χ(O) computed
by VOL with the corresponding adjacency, and χ(∂O) computed by LDB and
by OUR with face-adjacency are equal.

Figure 8 shows the running times on the two test sets, as a function of
the number c3 of black voxels. Figure 9 shows the ratio of execution times
of VOL and LDB over the execution time of OUR, with the same adjacency
type, illustrating their dependency on r. A larger time ratio means that the
implementation using our formulas is faster. In the following we comment
such results for the two test sets.

For test set Shapes, in Figure 8 the curves for the three surface-based for-
mulas (LDB, OURv, OURf ) are almost superimposed on each other, and the
surface-based approach gives much lower execution times than the volume-
based one. As expected, we see a linear dependency of the running times of
VOL on c3. The expected sub-linear dependency of LDB and OUR cannot
be appreciated here (it will be visible for test set Perlin) because too many
parameters impact on the value of c∗2 beside c3, such as the thickness of the
object shape and the grid side N .

Still for Shapes, in Figure 9 OUR can be up to more than five times faster
than VOL for small values of r, but this improvement becomes smaller for
larger values of r. For most inputs, having r < 1, OUR is over 1.5 times
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Shapes Shapes

Perlin

1

Figure 9: Ratios of the running times of VOL and LDB over the running time of OUR.
The vertical axis is the ratio of the running times, the horizontal axis is the ratio r = c∗2/c3.
For test set Shapes, VOL and LDB give very different ratios over OUR and are plotted
separately. For test set Perlin, they are plotted together in the same scale. See text for
comments.
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faster than VOL. Inputs with r > 1 are relatively few and at the lower grid
resolutions (N = 64 or 128). The input giving the minimum gain in speed
(r = 2.667179 and time ratio VOL/OUR equal to 1 with vertex-adjacency), is
the one shown in Figure 6 (b), but this discretization does not have a sufficient
resolution to correctly represent the corresponding shape. All other inputs
with r > 1 correspond to similar situations. Thus, in some sense, OUR is not
faster than VOL in cases where, in practice, the resolution is insufficient for a
correct shape representation and, thus, for reliable computation of the Euler
characteristic. Figure 9 shows that, for Shapes, OUR with face-adjacency is
between 1 and 1.9 times faster than LDB, with better performance for larger
r, thus for shapes more distant from that of a solid block.

In summary, for test set Shapes, our proposed formulas are always faster
to evaluate than the other ones. The speed-up with respect to VOL de-
creases with grid resolution, and the speed-up with respect to LDB increases
with grid resolution. From these results, we expect that our method will
be especially convenient for shapes with moderate complexity represented at
medium resolution (such that the ratio r is between 0.25 and 0.5), which
seems a realistic scenario.

For test set Perlin, in Figure 8 we show two separate curves for the first
test group (with larger r, thick lines) and for the second one (with smaller
r, thin lines). The curves for OUR with vertex- and with face-adjacency are
almost superimposed on each other, while the curve for LDB is above all the
others. All thick lines are above the corresponding thin line, i.e., increasing
r increases the running time as well. As the grid side N is fixed, within
each group r decreases with increasing c3. Figure 8 for Perlin shows a linear
trend of the running time of VOL, and a slightly sub-linear trend for the
surface-based LDB and OUR, as expected.

In test set Perlin, the convenience of our approach over the others de-
creases dramatically, as expected. LDB has the largest execution times. With
vertex-adjacency, OUR is slower than VOL, with the exception of some in-
puts of the second group. With face-adjacency, OUR is slightly faster than
VOL. In Figure 9, the first group of the Perlin set has r > 2.7 and the second
one r < 2.7 (a step is visible in the curves). With vertex-adjacency, on the
first group VOL has always the best running time, which is little more than
0.8 of the time of OUR; on the second group, OUR is faster for r < 2, but
the speed-up is < 1.2. With face-adjacency, OUR is clearly faster than LDB
(over 1.6 times), and slightly faster than VOL (about 1.2 times for the first
group, and up to 1.4 times for the second one). Time ratios tend to become
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stable for r approaching 6: LDB/OUR tends to 1.7, VOL/OUR tends to 0.8
with vertex-adjacency and to 1.2 with face-adjacency.

In summary, OUR is always preferable to LDB. It is evaluated faster than
VOL for objects having a value of r < 2, and may be up to six times faster
for small r. If the object is a discretized 3D shape at sufficient resolution,
then OUR is always convenient over other methods. If the object represents
a porous medium, and the Euler characteristic is to be computed with face-
adjacency, then our method leads to a moderate time saving, while with
vertex-adjacency the volumetric approach is faster.

7. Summary

We proposed a surface-based formula for computing the Euler character-
istic of an arbitrary object (well-composed or not) in the cubical grid, with
either vertex- or face-adjacency. The formula is based on counting only the
boundary vertices and faces in the object, with the vertex count adjusted for
the two adjacency relations. As objects coming from discretizations are rarely
well-composed, this makes our approach very useful. Our new surface-based
formula is conceptually simple and easy to implement.

A formal proof of correctness of the proposed formulas transforms the in-
put object O into two well-composed polyhedral complexes, homotopy equiv-
alent to O, depending on the chosen adjacency. Thus, it leads to another pos-
sible way to repair an object O in the cubical grid, adding a new member to
the rapidly growing family of repairing algorithms [4, 6, 10, 11, 13, 14, 34, 36].
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[11] Čomić, L., Magillo, P., 2019. Repairing 3D Binary Images Using the
FCC Grid. Journal of Mathematical Imaging and Vision 61 (9), 1301–
1321.
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2013. The Euler-Poincaré Formula Through Contact Surfaces of Vox-
elized Objects. Journal of Applied Research and Technology 11, 65–78.

[34] Siqueira, M., Latecki, L. J., Tustison, N. J., Gallier, J. H., Gee, J. C.,
2008. Topological Repairing of 3D Digital Images. Journal of Mathe-
matical Imaging and Vision 30 (3), 249–274.

[35] Sossa, H., 2016. On the Computation of the Number of Bubbles and
Tunnels of a 3-D Binary Object. In: Proceedings of the 5th Interna-
tional Conference on Pattern Recognition Applications and Methods,
ICPRAM. pp. 17–23.

27



[36] Stelldinger, P., Latecki, L. J., Siqueira, M., 2007. Topological Equiva-
lence between a 3D Object and the Reconstruction of its Digital Image.
IEEE Trans. Pattern Anal. Mach. Intell. 29 (1), 126–140.

[37] Toriwaki, J., Yonekura, T., 2002. Euler Number and Connectivity In-
dexes of a Three Dimensional Digital Picture. Forma 17, 183–209.

[38] Voss, K., 1991. Images, objects and surfaces in Z3. IJPRAI 5, 797–808.

[39] Ziou, D., Allili, M., 2002. Generating cubical complexes from image data
and computation of the Euler number. Pattern Recognition 35 (12),
2833–2839.

28


