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Abstract

The face centered cubic (FCC) grid is a space-filling
grid, one of the alternatives to the traditional cubic
one. We show that there are five Hamiltonian cycles
(non-equivalent up to rotation and symmetry), con-
necting the faces of a voxel in the FCC grid. Each
of the five cycles can be used to trace the boundary
of a class of objects in the grid, constructed by itera-
tively attaching voxels so that each new voxel shares
exactly one face with the set of already attached vox-
els.

1 Introduction

A Hamiltonian cycle in a graph G is a cycle that
visits every vertex of G exactly once [6]. The problem
of finding a Hamiltonian cycle in an arbitrary graph
is NP-complete [9]. In this paper we are interested
in constructing Hamiltonian cycles for a specific type
of graphs, in which the nodes represent the rhombic
faces of a voxel in the face centered cubic (FCC) grid,
and the arcs represent the (edge-)adjacency relation
between them.

An object O in the grid is a finite connected set of
voxels. Tracking and displaying the boundary of an
object has many applications such as medical imag-
ing or visualization of scientific data sets [7]. For the
cubic grid, it has been shown that any of the two
Hamiltonian cycles (non-equivalent up to rotation

and symmetry) that connect all faces of the cube can
be used to define a Hamiltonian cycle on all boundary
faces of an object that is obtained starting from a sin-
gle cube by iteratively attaching cubes so that each
newly attached cube shares exactly one face with the
already attached ones [10]. Such objects have a tree-
like structure: the dual graph T = (N, A) of the
object O, which has a node for each cube in O and
two nodes in N are connected through an arc in A
if the corresponding cubes share a common face, is a
tree.

Hamiltonian cycles are of special interest for de-
composing a polygonal mesh into triangle strips,
which are needed for efficient mesh processing by
graphic hardware [14]. They have also been used
in computer art [1].

We show that there are five non-equivalent Hamil-
tonian cycles on the faces of the voxel in the FCC
grid, and that each of them can be used to define
a Hamiltonian cycle on all boundary faces of a tree-
like object O in this grid. Note that a tree-like object
in the FCC grid is not necessarily simply connected:
it may contain pairs of vertex-adjacent voxels. This
parallels our existing work, which considers the same
problem on the body-centered cubic (BCC) [3] and
the diamond [2] grids.

This paper is organized as follows. In Section 2 we
introduce background notions on 3D grids, in Section
3 we review related work, in Section 4 we present
our contributions, and in Section 5 we summarize
the paper.



2 Non-Traditional 3D Grids

The only regular grid in 3D is the cubic one. Other
grids are known from crystallography [8], such as
the face centered cubic (FCC), body centered cubic
(BCC) or diamond grids, and they receive increas-
ing attention in the literature. Each of these grids
has its advantages and drawbacks depending on the
application.

The FCC grid is obtained from the cubic one by
placing one point at the center of each unit cube, and
one point at the center of each of its edges. In the
BCC grid, instead, one point is placed at the center
and one point at each vertex of the unit cube. In the
diamond grid, each point is a center of a tetrahedron,
having other four points at the tetrahedron vertices.

The Voronoi diagram of grid points induces a tes-
sellation of the 3D space into voxels. The voxel (3-
cell) of the FCC grid is the rhombic dodecahedron
(see Figure 1). It has twelve rhombic faces and two
types of vertices: open vertices, at the acute (sharp)
angles, and closed vertices at the obtuse angles in
each rhombic face. Two non-disjoint voxels in the
FCC grid either share an entire (rhombic) face or an
(open) vertex.

The voxel (3-cell) of the BCC grid is the truncated
octahedron, with eight regular hexagonal faces and
six square faces (see Figure 2 (a)). Two voxels in the
BCC grid are either disjoint or they share an entire
(hexagonal or square) face.

The voxel (3-cell) of the diamond grid is the triakis
truncated tetrahedron. It has four regular hexagonal
faces and twelve isosceles triangular faces (see Figure
2 (b)). There are two types of tetrahedra, depending
on the orientation. Two non-disjoint voxels in the
diamond grid either share an entire (hexagonal or
triangular) face or a vertex. Two tetrahedra sharing
a hexagonal face are of the opposite type, as are those
sharing only a vertex. Those sharing a triangular
face are of the same type.

3 Related Work

In the BCC grid, there is a unique Hamiltonian cycle
up to rotation and symmetry, i.e., up to cyclic per-
mutation and permutation of coordinate axes, among
those symmetric with respect to the voxel center [3],
connecting the faces of the truncated octahedron (see
Figure 3). It is obtained through exhaustive search,
which is simplified by noticing that in each such cy-
cle, each square face is adjacent to two hexagonal

Figure 1: A voxel of the FCC grid (a). All voxels
are congruent through translation. Two non-disjoint
voxels share either an entire face (b) or just a vertex

Figure 2: (a) A voxel of the BCC grid. All voxels
in this grid are congruent through translation. (b)
A voxel of the diamond grid. There are two types of
voxels congruent through translation: the shown one
and the one rotated upside down.

faces, and there are exactly two pairs of adjacent
hexagonal faces.

In the diamond grid, there are two non-equivalent
(oriented) Hamiltonian cycles [2], i.e., only one if the
orientation is disregarded (see Figure 4). This cy-
cle is obtained through exhaustive search, which is
simplified by noticing that each such cycle visits each
face in a group of three triangular faces consecutively,

Figure 3: The centrally symmetric Hamiltonian cycle
connecting the faces of the BCC voxel (in red). On
the right, the voxel surface has been flattened on the
plane and one hexagonal face became the unbounded
face.



Figure 4: The Hamiltonian cycle connecting the faces
of the voxel of the diamond grid. On the right, the
voxel surface has been flattened on the plane, and
one hexagonal face became the unbounded face.

i.e., the cycle is of the form H{T1HsToHsT3H4TY,
where H; is a hexagonal face, and T; is a group of
triangular faces, the first triangular face in the group
being adjacent to H; and the last one being adjacent
to H;1+1 (indexes are taken mod 4).

The cycles in the two grids can be used to define
a Hamiltonian cycle (and thus to trace the bound-
ary) on all boundary faces of tree-like objects in these
grids, constructed by iteratively attaching the voxels
so that each new voxel shares exactly one face with
the set of already attached ones [3, 2]. In the dia-
mond grid, the object must be composed of voxels
of the same type (attached through one triangular
face). Such an object in the diamond grid is neces-
sarily simply connected: two voxels of the same type
are never vertex-adjacent.

To our knowledge, no result exists in the literature
about non-equivalent Hamiltonian cycles in the FCC
grid. The cuboctahedron, which is the dual polyhe-
dron of the FCC voxel (rhombic dodecahedron), is
known to be Hamiltonian, but no characterization of
non-equivalent cycles was developed.

4 Hamiltonian cycles on the
faces of the FCC grid

Each voxel in the FCC grid has twelve rhombic faces,
that are in a one-to-one correspondence with the
edges of the unit cube (see Figure 5). The Hamilto-
nian cycle on the faces of the FCC voxel corresponds
to a cycle of the cube edges, where each two consec-
utive edges are adjacent (have a common endpoint).

Proposition 1 There are five mnon-equivalent
Hamiltonian cycles on the faces of a wvoxel in the
FCC grid.

Figure 5: The cube edges (a) correspond to the faces
of the FCC voxel (b).

Proof
A cycle may traverse the four edges of a cube face
according to four possible schemes:

(4) all four edges consecutively,

(34+1) three edges consecutively, and one sepa-
rately,

(242) two edges consecutively, and the other two
edges consecutively,

(24+1+41) two edges consecutively, and each of the
other two edges separately.

Considering the vertices of the cube, a cycle may
traverse the three edges incident in a vertex in three
possible ways:

[4] all three edges consecutively,

[2+1] two edges consecutively and one separately,
or

[1+1+1] all three edges separately.

The proof of Proposition 1 follows from the follow-
ing three lemmas:

Lemma 1 There are two mon-equivalent Hamilto-
nian cycles on the faces of the voxel in the FCC grid,
traversing some cube face with the scheme (4).

Lemma 2 There is one Hamiltonian cycle on the
faces of the vozel in the FCC grid, up to equivalence,
traversing no face with the scheme (4), and some face
with the scheme (3+1).

Lemma 3 There are two mon-equivalent Hamilto-
nian cycles on the faces of the voxel in the FCC grid,
traversing no face with the scheme (4) or (8+1).

Since the lemmas cover all possibilities for a Hamil-
tonian cycle, Proposition 1 follows from them.



The three lemmas will be proven having in mind
the four ways for traversing a cube face and the three
ways for traversing a cube vertex.

We denote by A, B, C and D the edges on the
upper horizontal face of the cube, 1, 2, 3 and 4 the
vertical edges and a, b, ¢ and d the edges on the lower
horizontal face (see Figure 5). The same symbols
denote the corresponding faces of the FCC voxel.

We will form partial paths of cube edges (FCC
faces) and consider the possible ways to extend them
to Hamiltonian cycles. A necessary condition for
completing a partial path to a Hamiltonian cycle is
that the set of the remaining edges (i.e., the edges not
yet included into the path) forms a single connected
component.

Proof of Lemma 1
Without loss of generality, let the upper face of the
cube be traversed with the scheme (4), and let the
edges of the upper face be traversed as ABCD. If
this happens for another face, or with the edges of
the face traversed in a different sequence, the cycles
will be equivalent modulo rotation and symmetry.
From D, it is possible to go either to 1 or to 4. We
first consider the case in which the path continues to
1. A path starting with ABC D1 can continue to a
or d:

e ABCDla cannot continue to 2 or b, because
that blocks the access to A, and the Hamilto-
nian cycle cannot be completed. Thus, it con-
tinues to d, and the obtained cycle is C{*BCP =
ABCD1lad4c3b2.

e ABCDI1d cannot continue to a because that
blocks access to A, or to ¢ because 4 gets discon-

nected from a, b, 2, 3. Thus, it continues to 4 and
the obtained cycle is C3'2°P = ABC D1d4c3ba2.

Now, we consider the case in which the path con-
tinues to 4. ABC D4 can continue to d or c.

e ABCDA4d cannot continue to 1 or a, because
that blocks the access to A, and the Hamiltonian
cycle cannot be completed. The obtained cycle
is C41P¢P = ABC D4dc3b2al.

e ABCD4c cannot continue to d because that
blocks access to A, or to b because 3 gets dis-
connected from a, d, 1,2. Thus, the only possible
cycle is C{PCP = ABC D4c3b2ad].

The four cycles are shown in Figure 6.

Looking at Figure 6, we see that C5B¢P and
C4'BCD traverse two faces with the scheme (4):
ABCD and one of its edge-adjacent faces. The two
faces adjacent to both such faces are traversed with
the scheme (3+1), and the remaining two faces with
the scheme (2+1+41). Four vertices are traversed
with the scheme [3] and four with the scheme [2+1].
The cycle C4BCP is symmetric to C5'BCP with re-
spect to the plane through the edges 1 and 3.

Still looking at Figure 6, we see that the cycles
C{BCD and CABCP traverse just one face with the
scheme (4), i.e., ABCD. The opposite face is tra-
versed with the scheme (2+141), two of the remain-
ing faces are traversed with the scheme (2+2) and
two with the scheme (3+1); among them, the pairs
of faces traversed with the same scheme share an
edge. Four vertices are traversed with the scheme [3]
and four with the scheme [2+1]. The cycle C{B¢P
is symmetric to C{*B¢P with respect to the plane
through the edges 1 and 3.

Thus, the FCC voxel has two classes of Hamil-
tonian cycles containing the scheme (4). We take
C{BCD and C4BCP as representatives of these two
classes.

Proof of Lemma 2
Lemma 2 considers the Hamiltonian cycles travers-
ing three edges of some face consecutively, which
have not been considered in Lemma 1, i.e., the ones
traversing no face with the scheme (4). Without loss
or generality, let the cycle start from the edges ABC'.
The cycle can arrive to A from 1 or 2. From C, it
can go to 3 or 4. Let us examine all possibilities.
First of all, we consider the cycles arriving to A
from 1 and continuing to 3. They are of the form
ABC3...1. A cycle can arrive to 1 from a, d or D.
From 3, it can go to b or c.

e ABC3b...al is impossible, because 2 gets discon-
nected from ¢, d, 4, D.

e ABC3c...al is impossible, because b,2 get dis-
connected from d, D, 4.

e ABCS3b...d1 is impossible because a,2 get dis-
connected from ¢, D, 4.

e AB(C3c...d1 is impossible because b, a, 2 get dis-
connected from 4, D.

e ABC3b...D1 gives the
ABC3b2adcdD1.

cycle C{{B¢ =



C{BCD = ABC D1ad4c3b2

C4'BCD = ABC D1d4c3ba2

C4'BCD = ABC D4dc3b2al

C{BCD = ABC D4c3b2adl

(2+1+1) g a (2+1+1) a (2+1+1) (2+1+1) a
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Figure 6: The four cycles starting with the sequence ABCD. The cube faces have been flattened on the
plane and the lower face abcd is the unbounded part of the plane. Each face is labeled in blue with its
traversal scheme, and a cube vertex is marked with a dot if it is traversed with the scheme [3], while it is
not marked if it is traversed with the scheme [241]. The cycles C; and C4, which traverse just one face with
the scheme (4), are mutually equivalent. Similarly, the cycles Cy and C3, which traverse two faces with the

scheme (4), are mutually equivalent.

e ABC3c...D1 gives the cycle ABC3cb2ad4D1.
But this cycle traverses the four edges of the
face d4D1 consecutively, thus it has been con-
sidered in Lemma 1.

Now, we consider the cycles arriving to A from
1 and continuing to 4, i.e., of the form ABC4...1.
This is impossible because D gets disconnected from
a,b,c,d,2,3.

Next, we consider the cycles arriving to A from 2
and continuing to 3. They are of the form ABC3...2.
A cycle can arrive to 2 from a or b. From 3, it can
go to b or c.

e ABC3b...a2 gives two cycles, ABC3bc4D1da?2
and ABC3bcd4D1a2. They both traverse the
face 4D1d with the scheme (4), so they have
been considered in Lemma 1.

e ABC(CS3c...a2 is impossible, because b gets discon-
nected from d, D, 1,4.

e ABC3c...b2 gives two cycles, ABC3c4D1dab2
and ABC3cd4D1ab2. They traverse the face
C3c4 with the scheme (4), so they have been
considered in Lemma 1.

Finally, we consider the cycles arriving to A from 2
and continuing to 4. They are of the form ABC4...2.
A cycle can arrive to 2 from a or b. From 4, it can
go toc, dor D.

e ABC4c..a2 is impossible because b, 3 get discon-
nected from d, D, 1.

e ABC4d..a2 is impossible because D, 1 get dis-
connected from b, ¢, 3.

e ABC4D..a2 gives the cycle ABC4D1dc3ba2;
this cycle traverses the face 4D1d with the
scheme (4).

e ABC4c..b2 is impossible because 3 gets discon-
nected from a,d, 1, D.

e ABC4d..b2 is impossible because ¢, 3 get discon-
nected from a, D, 1.

e ABC4D...b2 gives
ABC4D1adc3b2.

the caBC

cycle

These are all the possibilities with ABC. The two
cycles CABC and C4BC are shown in Figure 7. They
traverse four cube faces with the scheme (3+1) and
two faces, mutually opposite, with the scheme (2+2).
They traverse four cube vertices with the scheme [3],
i.e., two opposite vertices of each cube face, and the
remaining four vertices with the scheme [2+1].

Looking at Figure 7, we can see that the two cy-
cles are symmetric with respect to the plane through
the cube center, orthogonal to the edges B,D, b, d.
Equivalently, C5'B¢ is the same as C{'B¢ starting
from the edges 1D4 instead of ABC. Therefore,
there is only one class of cycles containing the scheme
(34+1) and not containing the scheme (4). We take
CABC as the representative of this class.

Proof of Lemma 3
Lemma 3 considers those cycles which never traverse
more than two edges of a cube face consecutively.




C{B = AB2ab3cdACD1  C4'B = AB2ab3CD4cdl  C4P = AB2ad4cb3CD1  CfB = AB3cb2ad4CD1
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Figure 8: The cycles starting with the sequence AB, not including the ones traversing some face with the
scheme (4) of (3+1). They traverse all faces with the scheme (2+2). The cycles in one class (the cycles
C1,Cs) traverse six vertices consecutively, i.e., all vertices except a pair of opposite ones. The cycles in the
other class (all other cycles) traverse four vertices consecutively, which are the endpoints of two opposite
cube edges. Vertices are marked according to their traversal scheme: a black dot for the scheme [3], a white
dot for the scheme [14+1+1], and no mark for the scheme [2+1].

Let the cycles begin with AB. They can arrive to A e AB3bc..1 and AB3ba..1 traverse the face B2b3

from 1 or 2. From B, they can go to 2 or 3. with the scheme (3+1), thus they have been
First, we consider the cycles arriving to A from 1 considered in Lemma 2, and are not considered
and continuing to 2. They are of the form AB2...1. here.

F 2, th 1 to ab, ba, ad or be.
e At e e AB3cb..1 must continue to 2ad, giving the cycle

AB _
e AB2ab..1 must continue to 3, giving two cy- Ci” = AB3cb2addCD1.

A A
cles, C{*? = AB2ab3cdACD1 and C3'F = e AB3cd..1 is impossible because C, D, 4 get dis-

AB2ab3C Dicdl. connected from a, b, 2.

e AB2ba..1 and AB2bc..1 traverse the face B2b3 e AB3CD..1 must continue to 4, giving the cycle
with the scheme (3+1), thus they have been CAB = AB3C D4cb2adl.
considered in Lemma 2, and are not considered

Finally, we consider the cycles arriving to A from
2 and continuing to 3. They are of the form AB3...2.

e AB2ad..1 must continue to 4 (and then to cb, From 3, the cycle can go to bc, ¢b, ba, cd or C'D.

and not CD or DC), giving the cycle C4'¥ = e AB3bc..2 and AB3ba..2 traverse the face B3b2
AB2ad4chb3CD1. with the scheme (3+1), so they have been con-
sidered in Lemma 2.

here.

We consider now the cycles arriving to A from 1
and continuing to 3. They are of the form AB3...1. e AB3cb..2 is impossible, because the two vertical
From 3, the cycle can go to be, cb, ba, cd or CD. edges incident to b are already used.



C{B¢ = ABC3b2adc4D1

(3+1) (3+1)

C4'B¢ = ABC4D1adc3b2

b (3+1é B (3+B

Figure 7: The cycles starting with the sequence
ABC, not including the ones traversing some face
with the scheme (4). They traverse two opposite
faces with the scheme (2+2), the other four faces
with the scheme (341). They traverse four vertices
(marked with a dot) consecutively, i.e., the two op-
posite vertices of each face. Other (non-marked) ver-
tices are traversed with the scheme [241].

e AB3cd..2 must continue to 1 or 4. 4 gives the
cycle C{P = AB3cd4CD1ab2. 1 is impossible,
because it disconnects a, b from 4, C, D.

e AB3CD..2 must continue to 1 or 4. 1 gives the
cycle C#AP = AB3CDlad4ch2, and 4 gives the
cycle C{'8 = AB3C D4cdlab2.

These are all the possibilities with AB. The cycles
CAB for i = 1...8 are shown in Figure 8. All six faces
are traversed with the scheme (242).

The cycles C{*? and C4'Z traverse six cube vertices
consecutively, i.e., three vertices for each face. The
remaining two (diagonally opposite) vertices are tra-
versed with the scheme [14+1+1]. The cycle C{'? can
be obtained from C{*® through symmetry with re-
spect to the horizontal plane through the center of
the cube, i.e., through replacing abed with ABCD
and vice versa. Therefore such two cycles are in the
same class.

The other six cycles traverse four vertices consecu-
tively, and therefore cannot belong to the same class
as C{f and C§'B. The other four vertices are tra-
versed with the scheme [2+1]. The cycle Ci'Z is the
same as Cs'P starting from the edges 3c instead of
AB. In the same way, C#B is equal to C5'Z starting
from the edges C3. The cycle Cg‘B is symmetric to
C4'B with respect to the plane passing through the
cube center and through the edges 2 and 4. The cy-
cles C4'B and CZP are equal to C4'P starting from
the edges 1D and d1, respectively, instead of AB.
Therefore, all cycles Cs. 7 belong to a unique class.

(a)

Figure 10: (a) The three ways in which a cycle can
traverse a rhombic face (open vertices are marked
with a dot), with the corresponding possible triangu-
lations of the face (dotted lines). For a face traversed
through two opposite edges (left), we can draw either
of the two diagonals. (b) The triangulation of the
boundary of a tree-like object O in the FCC grid, in-
duced by a Hamiltonian cycle using individual cycles
of the class C4'®. The green faces could be triangu-
lated with the opposite diagonal as well, the chosen
one gives the triangles with better aspect ratio.

In conclusion, we have two classes of cycles with
AB and not using the scheme (4) or (3+1). We take
CAP and C4'B, respectively, as the representatives of
these classes.

The five Hamiltonian cycles
CABCOD cABCD cABC 0AB  and  C4'P represent
the five equivalence classes of Hamiltonian cycles,
modulo symmetry and rotation. Figure 9 shows the
five representative cycles on the FCC voxel. From
here on, the representative cycle will be used for
denoting the corresponding class as well.

Proposition 2 There is a Hamiltonian cycle D
on the boundary faces of any tree-like object O in
the FCC grid, and D can be constructed by us-

ing just one class of Hamiltonian cycles among
ABCD pABCD pABC pAB pAB
Cl aCQ acl acl ’ CQ .

Proof

The proof is by induction on the number of voxels
in O. For a single voxel, the claim is obvious; the
Hamiltonian cycle is equal to any member cycle of
the selected class, denoted by C.

Let T be the tree of the given tree-like object O,
let v be the voxel associated to a leaf node of T, and
let O’ be the object obtained from O by deleting the
voxel v. By induction hypothesis, the thesis holds for
O’. Let D’ be the Hamiltonian cycle on the faces of
the boundary of O'. Let f be the face shared by the
voxel v and the object O’. Note that f is necessarily
a boundary face of O, and as such it is in D’.



C{XBCD _
ABCD1lad4c3b2

CQABCD —
ABCD1d4c3ba2

C{XBC —
ABC3b2adc4 D1

cAB _
AB2ab3cd4C D1

caB —
AB2ab3C D4cdl

Figure 9: The five Hamiltonian cycles on the FCC voxel.

The face f is traversed by D’ in one of the three
ways (see Figure 10 (a)):

1. through a pair of parallel edges,

2. through a pair of edges adjacent through a
closed vertex, or

3. through a pair of edges adjacent through an
open vertex.

Recall that open (closed) vertices in the FCC voxel
are those with an acute (obtuse) angle in their inci-
dent rhombic faces.

In classes C{HBCP CABOD CABC | we can find a
face traversed in any of the three ways. For example,
in the representative cycle CACP | the face D is tra-
versed through two parallel edges, and the faces A
and B through edges adjacent through a closed and
an open vertex, respectively. In classes C{\Z, C3'5,
we can find only faces traversed in the first two ways.
In any case, the cycle D is obtained from D’ by re-
placing the face f with a suitable member (through
rotation and/or symmetry) of the same class C on
the voxel v, with f removed.

Figure 11 illustrates the result of Proposition 2. A
tree-like object O in the FCC grid is shown, with a
Hamiltonian cycle on its boundary, constructed from
Hamiltonian cycles on the voxels composing it (in
this case, the cycles belonging to the class C5'Z have
been used).

Following the scheme of the proof of Proposition
2, a Hamiltonian cycle on the boundary of a tree-
like object can be constructed by choosing an arbi-
trary cycle for the first voxel, and then incrementally
adding face-adjacent voxels with a congruent cycle.

5 Summary

Beside the classic cubic grid, other three-dimensional
grids are gaining attention, among them the BCC

Figure 11: (a) A tree-like object O in the FCC grid,
with the tree T associated with O. (b) A Hamilto-
nian cycle on the boundary of O. The shown cycle
has been obtained by using on individual voxels only
the cycles belonging to the class C4'5.

grid, the FCC grid and the diamond grid. In this
paper, we have characterized the classes of possible
Hamiltonian cycles on the faces of the voxel of the
FCC grid, i.e., the rhombic dodecahedron. We have
also shown that, starting from such cycles, it is al-
ways possible to define a Hamiltonian cycle on the
surface of any tree-like object in the FCC grid. This
work completes our previous results on the BCC and
the diamond grids.

Hamiltonian cycles can be used in the generation
of triangle strips covering the surface of the object,
as well as in efficiently tracing and visualizing the
boundary of skeletal shapes.

A Hamiltonian cycle (as the one in Figure 11) nat-
urally induces a generalized triangle strip covering
the surface of the tree-like object: each rhombic face
traversed through a pair of adjacent edges is trian-
gulated in a unique way (i.e., through the diagonal
incident in the common vertex of the two edges),
while each rhombic face traversed through a pair of
opposite edges can be triangulated in either way (see
Figure 10 (a)). Generating triangle strips in this way
is much easier than using a generic method for quad-
meshes, because we just have to select from a prede-



fined set of cycles (and corresponding face triangula-
tions), for each voxel. The use of the cycles from the
classes C{*B or C3'B is especially interesting, because
all rhombic faces can be triangulated by drawing the
shorter diagonal, thus providing a triangulation of
good quality (see Figure 10 (b)).

Paths that traverse all faces of a surface are also
at the basis of many methods for mesh compression
and transmission [15, 13, 12, 4, 16, 18, 5], and Hamil-
tonian cycles could be considered in this context.
Recently, the problem of cutting a polygonal mesh
and unfolding it on the plane has gained attention
[17, 11]. Such task has applications in manufactur-
ing and packaging. Here, Hamiltonian cycles can be
used to obtain a unique band from a mesh.
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