
Repairing Binary Images

through the 2D Diamond Grid

POST-PRINT

Article published on Lecture Notes in Computer Science, volume 12148
https://link.springer.com/chapter/10.1007/978-3-030-51002-2 13

Lidija Čomić
Faculty of Technical Sciences, University of Novi Sad, Serbia

comic@uns.ac.rs

Paola Magillo
DIBRIS, University of Genova, Italy

magillo@dibris.inige.it

Abstract

A 2D binary image is well-composed if it does not contain a 2 × 2 configuration of two diagonal black
and two diagonal white squares. We propose a simple repairing algorithm to construct two well-composed
images I4 and I8 starting from an image I, and we prove that I4 and I8 are homotopy equivalent to I with
4- and 8-adjacency, respectively. This is achieved by passing from the original square grid to another one,
rotated by π/4, whose pixels correspond to the original pixels and to their vertices. The images I4 and I8
are double in size with respect to the image I. Experimental comparisons and applications are also shown.

keywords: Digital topology, Well-composed images, Repairing 2D digital binary images

1 Introduction

In 2D, an image I in the square grid is well-composed if it does not contain blocks of 2 × 2 squares with
alternating colors in chessboard configuration [1, 2, 18, 19]. The process of transforming a given image into
a well-composed one, that is in some sense similar to the original, is called repairing. Many image processing
algorithms are simpler and faster when applied on well-composed images, making image repairing and study of
different types of well-composedness a vivid research area [3, 4, 5, 8, 9].

Here, we address 2D image repairing by passing to another square grid, rotated by π/4 with respect to
the original one and scaled by factor 1/

√
2, in which each diamond (rotated square) corresponds either to a

square or to a vertex in the original grid. In the rotated grid, we construct two well-composed images I4 and
I8, homotopy equivalent to I with 4- and 8-adjacency, respectively.

1

The advantages of our approach are that the two repaired images are still in a square grid, so they can be
processed with classical methods, in a simplified way thanks to well-composedness; we can choose between two
types of adjacency in repairing; and the size of the resulting image in the diamond (rotated square) grid is just
double that of the original one.

The contributions of this paper are:

• A simple repairing procedure, which results in two well-composed images I4 and I8, each of which is twice
as large as the initial image I.

• A proof that the two repaired images I4 and I8 are well-composed and homotopy equivalent to the image
I with 4- and 8-adjacency, respectively.

• Comparison with the state-of-the-art, showing the usefulness or our approach.

2 Background Notions

The square grid is the tessellation of the plane into Voronoi regions associated with points with integer coor-
dinates. Each region (pixel) is a unit square, with sides parallel to the coordinate x and y axes [16, 17]. (For
a set S of points in the plane, the Voronoi region associated to a point p in S contains all points in the plane
that are closer to p than to any other point in S [10, 21].) Given a square P , the four squares sharing an edge
with P are said to be 4-adjacent to P ; the eight squares sharing a vertex with P are said to be 8-adjacent to
P , and the four of them which are not 4-adjacent are called strictly 8-adjacent.

A 2D binary digital image I is a finite set of squares in the square grid. The squares in I are called black
(object) squares. The squares in the complement Ic of I are called white (background). Connectedness is an
equivalence relation obtained as the reflexive and transitive closure of adjacency. The classes of the image I with
respect to α-connectedness are called connected α-components, for α ∈ {4, 8}. Finite connected components of
the complement of I are called holes. To maintain some similarity between the digital and continuous topology,
the components and holes of I are defined with opposite types of adjacency.

A 2D image I has a gap at a vertex v if v is incident to two strictly 8-adjacent white squares (and two
strictly 8-adjacent black ones) [6, 7, 12]. A gap-free image is called well-composed [18].

Depending on the chosen adjacency relation, two cell complexes can be naturally associated with a given
image I. Recall that a cell complex Q is a collection of cells (homeomorphic images of the unit ball, that fit
nicely together: the boundary of each cell and the intersection of any two cells (if nonempty) is composed of
cells of lower dimension). In the plane, the underlying space |Q| of a complex Q is the set of points in R2 that
belong to some cell in Q.

For an image with 8-adjacency, the associated complex Q8 is cubical and consists of the squares in I and all
their edges and vertices. For an image with 4-adjacency, the associated polygonal complex Q4 can be obtained
from Q8 by inserting a vertex at the center of each edge incident to a critical vertex, duplicating the critical
vertices, and moving the two copies slightly towards the interior of the two incident black squares. The difference
between the two complexes around a critical vertex is illustrated in Figure 1.

A formal definition of homotopy [15] is out of the scope of this paper. Intuitively, if one shape can be con-
tinuously deformed into the other then the two shapes are homotopy equivalent. Two 2D homotopy equivalent
shapes have the same number of connected components and holes, with the same containment relations among
them.

2

v2v1
v

(a) (b)

Figure 1: Complexes Q4 (a) and Q8 (b) in the neighborhood of a critical vertex v. The transformation in (a)
affects only one quarter of each pixel incident to v.

OR

Figure 2: Repairing process according to Rosenfeld et al. [23]. Each square becomes a block of 3 × 3 squares,
which become black or white according to 8-adjacency or 4-adjacency (last two images).

3 Related Work

Several repairing algorithms have been proposed in the literature, each with its features (regarding size, topology
preservation, choice of adjacency and type of the output complex), as well as its benefits and drawbacks. We
review briefly the repairing algorithm proposed for 2D images [23], and the 2D versions of the algorithms
proposed for 3D images [13, 24, 25].

The method by Rosenfeld et al. [23] for 2D binary images uses a rescaling by factor 3 in both x and y
directions of the square grid. In the rescaled grid, changing all black squares involved in a critical configuration
to white squares, or vice versa, removes all critical configurations, without creating other ones (see Figure 2).
The repaired image is homotopy equivalent to the initial image with the appropriate adjacency relation.

The randomized algorithm by Siqueira et al. [24] iteratively changes white squares to black ones, until a
well-composed image is obtained. The grid resolution of the repaired image is the same as that of the input
image, but there is no guarantee that the topology (homotopy) of the input image is preserved.

The algorithm by Gonzalez-Diaz et al. [13] creates a polygonal well-composed complex homotopy equivalent
to the input image with 8-adjacency by increasing the grid resolution four times in each coordinate direction,
thickening the neighborhood of critical vertices and subdividing it into polygons. The idea of the method is
illustrated in Figure 3. Later [14], the rescaling factor is reduced to 2.

The algorithm by Stelldinger et al. [25] increases the grid resolution twice in both coordinate directions, by
creating an additional square for each edge and each vertex in the grid. If 4-adjacency is considered for I, the
squares corresponding to the edges and vertices in Q are black only if all the incident squares in I are black. If
8-adjacency is considered, then the squares corresponding to the edges and vertices in the associated complex
Q (edges and vertices incident to some black square in I) are also black (see Figure 4).

The algorithms by Čomić and Magillo [8, 9] repair 3D images by passing from the cubic to the body
centered cubic (BCC) or the face centered cubic (FCC) grid, respectively. These grids are defined by the
Voronoi tessellation of R3 associated with the centers and the vertices, or the centers and the midpoints of the
edges of each unit cube. The 2D repairing algorithm proposed here uses the same basic idea of passing from

3

(a) (b)

Figure 3: Repairing process according to Gonzalez-Diaz et al. [13]. The square complex becomes a polygonal
complex, original squares become 2-cells of different shapes, depending on how many of their vertices are
critical. (a) Geometry, (b) matrix representation, where blue, red and green squares correspond to 0-, 1- and
2-dimensional cells, as in [13].

OR

Figure 4: Repairing process according to Stelldinger et al. [25]. Each square, edge and vertex becomes a square,
which becomes black or white according to 8-adjacency or 4-adjacency (last two images).

the square to an alternative (diamond) grid, but is necessarily different, due to specific properties of this grid.

4 Repairing Algorithm

We propose to pass from the square to the 2D diamond grid, by extending the set Z2 of square centers with the
set (Z+1/2)2 of square vertices and tessellating the plane into Voronoi regions associated with the extended set.
Each region is a rotated square (a diamond) with sides parallel to the lines x± y = 0. We call even diamonds
the ones associated with square centers, and odd diamonds the ones associated with square vertices.

We create two well-composed images I4 and I8 in the diamond grid, homotopy equivalent to the image I with
4- and 8-adjacency, respectively. We include in the repaired images I4 and I8 all even diamonds corresponding
to the black squares. We include also all odd diamonds corresponding to

1. the vertices incident to four black squares;

2. the vertices incident to three black and one white square;

3. the vertices incident to two vertically (horizontally) 4-adjacent black squares and two white ones, if the
vertex is in the direction of the positive x axis (y axis) of the shared edge.

In the repaired image I8, we include also the odd diamonds corresponding to

4. the critical vertices,

while we do not include those diamonds in the image I4.
There are 16 different types of vertices in the square grid, depending on the configuration of the black

and white incident squares. We show these configurations and the corresponding black diamonds in Figure 5.

4

(a) (b) (c) (d) (e) (f)

Figure 5: All possible configurations at a vertex in the square grid, and corresponding repaired configurations in
the diamond grid. The four incident squares of the vertex can be: (a) all white, (b) one black and three white,
(c) two black and two white, (d) three black and one white, (e) three black and one white, (f) all black. The
diamond corresponding to the vertex is added in the two upper cases of (c), in (e), in (f) and, for the second
version of the algorithm, in (d). Note that y-axis points downwards, as usual for images.

Figure 6 presents the pseudocode of the repairing algorithm. Figure 7 shows the effect of the two versions of
the repairing algorithm on a sample image.

5 Well-Composedness and Homotopy Equivalence

We show that our repairing algorithm produces well-composed images homotopy equivalent to the given image
I with the chosen adjacency relation.

5.1 Well-Composedness

Proposition 1 The two images I4 and I8 produced by our repairing algorithm are well-composed.

Proof: A critical vertex in the diamond grid is incident to exactly two black diamonds that are both even or
both odd. Our rules prevent the creation of either type of criticality:

• For each pair of 8-adjacent black even diamonds, corresponding to a pair of 4-adjacent squares in I, the
odd diamond (4-adjacent to both) in the conventional direction, corresponding to a vertex incident to
both squares in I, is in I4 and I8, thus preventing the creation of critical vertices incident to two even
black diamonds.

• For each pair of 8-adjacent black odd diamonds, corresponding to two adjacent vertices (incident to the
same edge e) in the square grid, the two even diamonds, corresponding to the two squares incident in
e, cannot be both white. Since a filled vertex has always at least two incident black squares, the only
possible configuration would be an array of 2× 3 or 3× 2 squares, where the two central ones are white,
and the remaining four are black. In this case, thanks to the choice of the conventional direction, rule 3
of our algorithm would not fill both vertices. �

5

Repair(Image Q, int a, Image D)
// Q is the input image, a is the adjacency type ∈ {4, 8},
// D is the output image (rotated 90 degrees), given as all white
1 for each black pixel (x, y) in Q
2 // (x, y) is a square, (x− y, x+ y) the corresponding even diamond
3 set (x− y, x+ y) as black in D
4 for each black pixel (x, y) in Q
5 // v will contain the odd diamonds corresponding to the vertices of the square (x, y)
6 v[0..3] = Get4Adj(x− y, x+ y)
7 for i = 0..3 // for each vertex
8 if MustFill(v[i], D, a)
9 set v[i] as black in D

MustFill(int x, int y, Image D, int a)
// (x, y) is an odd diamond, a is the adjacency type ∈ {4, 8},
// D is the output image where black even pixels have been set,
// the function checks if (x, y) must be filled
1 p[0..3] = Get4Adj(x, y) // even diamonds
2 b = the number of black diamonds among p[0..3]
3 if (c ≤ 1) return false
4 if (c ≥ 3) return true
5 // c = 2, check configuration
6 if (a = 4) // 4-adjacency
7 return (v[0] is black) and (v[2] is white)
8 // 8-adjacency
9 return (v[0] is black) or ((v[1] is black) and (v[3] is black))

Get4Adj(int x, int y)
// (x, y) is a diamond, the function returns its four 4-adjacent diamonds
1 return [(x, y − 1), (x+ 1, y), (x, y + 1), (x− 1, y)]

Figure 6: Pseudocode of the repairing algorithm and of auxiliary functions used in it.

6

(a) (b) (c)

Figure 7: (a) An image I in the square grid and the two repaired images I4 (b) and I8 (c) in the rotated grid
(red diamonds) with the two versions of the algorithm.

(a) (b) (c)

Figure 8: Triangulation of (a) squares and (b) polygonal cells (for i = 4) in Qi, and (c) of diamonds in Ii.

5.2 Homotopy Equivalence

Proposition 2 The spaces |I4| and |I8| are homotopy equivalent to the spaces |Q4| and |Q8|, respectively.

Proof: For i ∈ {4, 8}, we construct simplicial complexes ΣQi and ΣIi that triangulate Qi and Ii, respectively.
Recall that a k-simplex is the convex hull of k + 1 affinely independent points. In 2D, simplexes are vertices,
edges and triangles. A simplicial complex Σ is a finite set of simplexes, such that

• for each simplex in Σ, all its faces are in Σ and

• the intersection of two simplexes in Σ is either empty or composed of their common faces.

We show that |Qi| and |Ii|, i ∈ {4, 8}, are homotopy equivalent by constructing a sequence of collapses and
expansions [27] that transform ΣQi to ΣIi. In 2D, an elementary collapse removes from a simplicial complex Σ

• a triangle t and and a (free) edge e, if t is the only triangle incident to e, or

• an edge e and a (free) vertex v, if e is the only edge incident to v.

Expansion is inverse to collapse, it introduces into Σ a pair of simplexes such that one is a free face of another.
Both operations preserve the homotopy type of |Σ| [27].

We triangulate Qi by introducing a vertex at the midpoint of each edge, inscribing the corresponding even
diamond in each square C in Qi (for i = 4, in the corresponding polygonal cell if some vertex of C is critical),
and connecting the center c of each diamond to the four diamond vertices. We triangulate Ii by introducing
the center c of each diamond and connecting c to the four diamond vertices. The triangulations ΣQi and ΣIi
are illustrated in Figure 8.

7

1 1

1

2

2 1’

1’

2’

1’

1’

2

1

1

2

2

2

2 2

2

2

2

2

2

1

2

1

2 2 1

1

1

1’

1’

2’

1’

1’

(a) (b) (c)

Figure 9: (a) Superposition of the triangulations ΣQi and ΣIi for an example without critical configurations
(there is no difference between i = 4 and i = 8). Red triangles belong to both triangulations, yellow triangles
belong to ΣQi only, and cyan triangles belong to ΣIi only. Yellow and cyan triangles are labeled with their
type. (b) Triangles of ΣQi, which are not in ΣIi, are removed through collapse. (c) Triangles of ΣIi, which are
not in ΣQi, are created through expansion.

The two triangulations ΣQi and ΣIi coincide on |Qi| ∩ |Ii|. We will transform ΣQi into ΣIi through a
process that first collapses extra triangles of ΣQi, and then creates the missing triangles through expansion.

We collapse the triangles in ΣQi that are outside ΣIi. They are contained in odd diamonds centered at the
vertices in I incident to

1. exactly one black square,

2. exactly two edge-adjacent black squares and are not in the conventional direction, or

3. (for i = 4) exactly one of the two polygonal 2-cells corresponding to the two strictly vertex-adjacent black
squares (these are the two copies of the critical vertices).

For each triangle t of type 1 or 3, we collapse t with one of its two free edges, and we collapse the remaining
edge with its unique free vertex. Triangles of type 2 come in pairs. We collapse the two triangles, each with
its unique free edge, and we collapse their shared edge with its unique free vertex. This stage is illustrated in
Figures 9 (b) and 10 (b), (d).

We expand the triangles in ΣIi outside of ΣQi. They are contained in odd diamonds centered at the vertices
in I incident to

1’. exactly two edge-adjacent black squares and are in the conventional direction,

2’. exactly three black squares, or

3’. (for i = 8) exactly two strictly vertex-adjacent black squares (critical vertices).

We expand each triangle t of type 2’ or 3’ by adding t together with its unique free edge. Triangles of type 1’
come in pairs. We expand first their shared edge together with its unique free vertex, and we expand the two
triangles, each with its unique free edge. This stage is illustrated in Figures 9 (c) and 10 (d).

6 Experimental comparisons and results

We implemented our image repairing algorithm and, for comparison purposes, the algorithm in [25]. We have
chosen this algorithm as our competitor because it is the one using the least additional memory among those

8

1

3

31

1

1

1

1

C C

1

3

31

1

1

1

1

(a) (b)

1

1

1

1

1

1

3’

3’

C C E

1

1

1

1

1

1

3’

3’

(c) (d)

Figure 10: (a) Triangle types of ΣQ4 and ΣI4 for a critical configuration of 2× 2 pixels. (b) Transformation of
ΣQ4 into ΣI4. (c) Triangle types of ΣQ8 and ΣI8 for the same configuration. (d) Transformation of ΣQ8 into
ΣI8. In (b) and (d), arrows with letters C and E denote collapsing of extra triangles and expansion to create
missing triangles. In (b) expansion is not needed.

which are able to preserve image homotopy and which produce an image in the square grid. Both algorithms
have been implemented in the two versions, i.e., producing a repaired image homotopy equivalent to the given
one with both 4- and 8-adjacency.

We tested the algorithms on several gray-scale images from the pixabay repository (https://pixabay.com/en/photos/grayscale/)
after converting them to binary images by applying a threshold equal to 128 (where gray values are from 0 to
255). The used images are shown in Figure 11. In order to analyze a possible dependency of the results from
image resolution, for each image we produced two lower resolutions by resizing it to 1/2 and 1/4 of the original
size (in both x and y direction).

All algorithms are implemented in C language and executed on a PC equipped with an Intel CPU i7-2600K
CPU at 3.4 Gigahertz with 32 Gigabytes of RAM.

Table 1 shows the sizes of the input images, the number of critical configurations in them, the sizes of the
repaired images, and the execution times. As expected, our repaired image has half the size of the one produced
by our competitor [25]. The time taken by our algorithm is from 67% to 75% that of the competitor algorithm
in the case of repairing with 8-adjacency, and from 55% to 62% with 4-adjacency.

Figure 12 shows a repaired image. From the point of quality, the result produced by our competitor [25]
is lighter than the original with 4-adjacency and darker with 8-adjacency. We analyze this behavior in detail
on toy inputs in Figure 13. The input images have black and white lines of the same width. This property
is maintained in the images repaired by our algorithm. The competitor algorithm [25], instead, shrinks black
lines and expands white lines with 4-adjacency, and does the opposite with 8-adjacency. This may be a problem
when preserving the area of black zones is important.

Getting back to Figure 12, the original image has 72964 black pixels. Our repaired images have 142434 and
150106 black pixels, and the pixel size is 1/2 of the original one. Thus, the areas of black zones in our repaired
images are 71217 (97.6% of the original) and 75053 (102.9% of the original), respectively. The difference in
areas with respect to the original image is below 3%. Images repaired with our competitor [25] have 198640
and 384452 black pixels, and the size of each pixel is 1/4 of the original one. Thus, the areas of black zones in
the repaired images are 49660 (68.0% of the original) and 96113 (131.7% of the original), respectively. Here,

9

acid (960× 625) birch (960× 639) car (960× 602)

chess (960× 560) fog (960× 353) hands (889× 720)

Figure 11: Our binary versions of original images, with the size of bounding box.

the difference with respect to the original is more than 30%.
On the other side, our algorithm tends to smooth right angles, as we see in Figure 13 (b), and is not

completely symmetric in the four cardinal directions. Another evident feature of our results is rotation. This is
a problem when the image is seen by human users (where well-composedness is not relevant), while it does not
affect computations made on images (where well-composedness may be important).

As the diamond grid is a (rotated) square grid, all classical image processing algorithms can be applied to
the two repaired images. Moreover, some algorithms are simpler on well-composed images. Of course, execution
time increases with image size. In the following, we analyze the impact of the size of the repaired image on the
performance of image processing algorithms, since our repaired images are half in size, with respect to the ones
repaired by our best competitor [25] (as we have just shown). As meaningful examples, we consider contour
extraction and shrinking, i.e., a very simple and a rather complex task.

Finding the contours of an image means finding sequences of black border squares bounding each connected
component and each hole of the image I. Connected components and holes can be considered with either 4-
or 8-adjacency. For a well-composed image, the adjacency type makes no difference, and 4-connected contours
can be extracted: each contour is a circular list of black squares where each square is 8-adjacent to at least one
white square, and 4-adjacent to the previous square in the list. We implemented the extraction of 4-connected
contours on well-composed images by means of the classical contour following approach [11, 20]. We have a
current border square at each step, and we decide how to extend the contour based on the configuration (black
or white) of the eight squares adjacent to it. We adopt a compressed representation of the contour, from [26],
that is, we do not record all squares of the contour, but just the ones corresponding to the corners. This saves
space and allows easy rescaling of the contour when the image is enlarged or shrunk.

Table 2 (a) compares the times for contour extraction from images repaired with our algorithms and with the
competitor one [25]. As image sizes are halved, execution times on our repaired images are almost halved, with
more gain for 8-adjacency. The ratio is from 0.44 to 0.55 for 8-adjacency and from 0.5 to 0.75 for 4-adjacency,
and there is no specific trend with image resolution.

The aim of shrinking is to reduce each connected component C of an image I to a single pixel if C is

10

4−adjacency

our algorithm

8−adjacency
our algorithm

4−adjacency
competitor algorithm

8−adjacency

competitor algorithm

original

Figure 12: A portion of test image “birch” with its repaired versions.

1 1

(a) (b)

Figure 13: Two toy images and their repaired versions. From left to right: input image, output images by
competitor algorithm [25] with 4- and 8-adjacency, output images by our algorithm with 4- and 8-adjacency.
Image (b) is well-composed and our algorithm gives the same output with both adjacencies.

11

Table 1: The table shows: number of black squares (size) of input images and of output repaired images obtained
by our method (our) and by the competitor one in [25] (comp.); number of critical vertices in the input images;
execution times (in milliseconds); ratio between running times of our method and of the competitor one [25].
Images have been repaired according to 4- and 8-adjacency.

input image 4-adjacency 8-adjacency
image critical our comp.[25] time our comp.[25] time

size vertices size time size time % size time size time %
acid 1 234K 1308 466K 122 870K 204 60 467K 122 999K 167 73
acid 1/2 58K 387 115K 31 208K 51 61 115K 31 253K 42 74
acid 1/4 14K 218 28K 7 48K 13 54 28K 7 65K 10 70
birch 1 340K 22K 678K 206 1038K 330 62 700K 203 1665K 274 74
birch 1/2 88K 4485 176K 51 288K 83 60 181K 50 414K 68 74
birch 1/4 23K 574 46K 12 79K 21 57 47K 12 105K 17 71
car 1 448K 2239 896K 230 1697K 386 59 898K 229 1880K 316 72
car 1/2 112K 540 225K 57 424K 97 59 225K 57 473K 79 72
car 1/4 28K 103 56K 14 106K 24 58 56K 14 119K 19 74
chess 1 213K 180 425K 105 834K 179 59 426K 105 867K 146 72
chess 1/2 53K 29 106K 26 205K 45 58 106K 26 219K 36 72
chess 1/4 13K 6 26K 6 50K 11 55 26K 6 56K 9 67
fog 1 196K 700 391K 98 758K 166 58 392K 97 805K 135 72
fog 1/2 49K 146 98K 24 190K 41 59 98K 24 202K 34 71
fog 1/4 12K 22 25K 6 47K 10 60 25K 6 51K 8 67
hands 1 422K 1030 845K 209 1659K 356 59 846K 209 1720K 290 72
hands 1/2 106K 280 212K 52 414K 89 58 212K 52 433K 73 71
hands 1/4 27K 33 53K 13 103K 22 59 53K 13 110K 18 72

homotopy equivalent to a disk, to a simple closed chain of pixels if C is homotopy equivalent to a circle, etc.
This is commonly achieved by iteratively removing squares from the image, i.e., changing their status from
black to white. Squares can only be removed if their removal does not change either the number of components
or the number of holes according to the chosen (4- or 8-) adjacency. The process is iterated until no more
squares may be removed. We consider shrinking of a well-composed image, with 4-adjacency. The decision
whether a square is removable or not only depends on the status of the eight squares in its neighborhood (see
[16, 22] for details and algorithms). Squares with disjoint neighborhoods do not affect the removability of each
other. In the method we implemented, black squares are classified into four subsets according to the parity
of their (x, y) coordinates. The algorithm performs a cycle on the four subsets, examining one of them at a
time. Removable squares of the current subset do not interfere and are removed together. Table 2 (b) compares
the times for shrinking images repaired with our algorithms and with the competitor one [25]. Here running
time also depends heavily on image characteristics, besides input size, but we can see that execution times are
roughly halved also in this case. Ratios are a bit smaller than for contour extraction, ranging from 0.34 to 0.5
with 8-adjacency and from 0.32 to 0.6 with 4-adjacency, and present no specific trend with resolution.

12

Table 2: Running times for (a) contour extraction and (b) shrinking, applied on images repaired by our approach
and by the competitor one [25] (in milliseconds). From top to bottom: full resolution, scaled 1/2, and scaled
1/4.

(a)

(b)

13

7 Summary

We have proposed a simple method to transform a given 2D binary image into two homotopy equivalent well-
composed images (depending on the chosen adjacency) by using the 2D diamond grid. The resulting images
are just double in size with respect to the original one, and this improves the best existing homotopy preserving
method [25], where the image size is doubled in both coordinate directions (leading to a factor 4). The diamond
grid is a rotated square grid, thus all known image processing algorithms can be applied to our repaired
images, and their smaller size, with respect to the state-of-the-art of homotopy equivalent image repairing,
saves processing time.

8 Acknowledgments

This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia
within the Project No. 34014.

References

[1] N. Boutry, T. Géraud, and L. Najman. How to make nD images well-composed without interpolation. In
2015 IEEE International Conference on Image Processing, ICIP 2015, pages 2149–2153, 2015.

[2] N. Boutry, T. Géraud, and L. Najman. A Tutorial on Well-Composedness. Journal of Mathematical
Imaging and Vision, 60(3):443–478, 2018.

[3] N. Boutry, T. Géraud, and L. Najman. How to Make n-D Plain Maps Defined on Discrete Surfaces
Alexandrov-Well-Composed in a Self-Dual Way. Journal of Mathematical Imaging and Vision, 2019.

[4] N. Boutry, R. González-Dı́az, and M. J. Jiménez. One More Step Towards Well-Composedness of Cell
Complexes over nD Pictures. In Discrete Geometry for Computer Imagery - 21st IAPR International
Conference, DGCI, pages 101–114, 2019.

[5] N. Boutry, R. González-Dı́az, and M.-J.. Jiménez. Weakly well-composed cell complexes over nD pictures.
Information Sciences, 499:62–83, 2019.

[6] V. E. Brimkov, A. Maimone, G. Nordo, R. P. Barneva, and R. Klette. The Number of Gaps in Binary
Pictures. In Advances in Visual Computing, First International Symposium, ISVC, pages 35–42, 2005.

[7] V. E. Brimkov, D. Moroni, and R. P. Barneva. Combinatorial Relations for Digital Pictures. In Discrete
Geometry for Computer Imagery, 13th International Conference, DGCI, pages 189–198, 2006.

[8] L. Čomić and P. Magillo. Repairing 3D binary images using the BCC grid with a 4-valued combinatorial
coordinate system. Information Sciences, 499:47–61, 2019.

[9] L. Čomić and P. Magillo. Repairing 3D Binary Images Using the FCC Grid. Journal of Mathematical
Imaging and Vision, 61(9):1301–1321, 2019.

[10] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational geometry: algorithms
and applications, 3rd Edition. Springer, 2008.

14

[11] S. J. E. Gose, R. Johnsonbaugh. Pattern Recognition and Image Analysis. Prentice-Hall, Inc., 1996.

[12] J. Françon, J. Schramm, and M. Tajine. Recognizing arithmetic straight lines and planes. In Discrete
Geometry for Computer Imagery, 6th International Workshop, DCGI, pages 141–150, 1996.

[13] R. González-Dı́az, M.-J.. Jiménez, and B. Medrano. 3D well-composed polyhedral complexes. Discrete
Applied Mathematics, 183:59–77, 2015.

[14] R. González-Dı́az, M.-J.. Jiménez, and B. Medrano. Efficiently Storing Well-Composed Polyhedral Com-
plexes Computed Over 3D Binary Images. Journal of Mathematical Imaging and Vision, 59(1):106–122,
2017.

[15] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[16] R. Klette and A. Rosenfeld. Digital geometry. Geometric methods for digital picture analysis. Morgan
Kaufmann Publishers, San Francisco, Amsterdam, 2004.

[17] T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, and
Image Processing, 48(3):357–393, 1989.

[18] L. J. Latecki. 3D Well-Composed Pictures. CVGIP: Graphical Model and Image Processing, 59(3):164–172,
1997.

[19] L. J. Latecki, U. Eckhardt, and A. Rosenfeld. Well-Composed Sets. Computer Vision and Image Under-
standing, 61(1):70–83, 1995.

[20] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press, 1982.

[21] F. P. Preparata and M. I. Shamos. Computational Geometry - An Introduction. Texts and Monographs in
Computer Science. Springer, 1985.

[22] K. Preston Jr. and M. J. B. Duff. Modern Cellular Automata. Advanced Applications in Pattern Recog-
nition. Springer US, 1984.

[23] A. Rosenfeld, T. Y. Kong, and A. Nakamura. Topology-Preserving Deformations of Two-Valued Digital
Pictures. Graphical Models and Image Processing, 60(1):24–34, 1998.

[24] M. Siqueira, L. J. Latecki, N. J. Tustison, J. H. Gallier, and J. C. Gee. Topological Repairing of 3D Digital
Images. Journal of Mathematical Imaging and Vision, 30(3):249–274, 2008.

[25] P. Stelldinger, L. J. Latecki, and M. Siqueira. Topological Equivalence between a 3D Object and the
Reconstruction of its Digital Image. IEEE Trans. Pattern Anal. Mach. Intell., 29(1):126–140, 2007.

[26] M. E. T. Miyatake, H. Matsushima. Contour representation of binary images using run-type direction
codes. Machine Vision and Applications, 9:193–200, 1997.

[27] J. H. C. Whitehead. Simplical spaces, nuclei and m-groups. Proceedings of the London Mathematical
Society, 45:243–327, 1938.

15

