
Computation of 2D Discrete Geometric Moments

through Inclusion-Exclusion

Lidija Čomić1, Paola Magillo2

1. Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
comic@uns.ac.rs

2. DIBRIS, University of Genova, Genova, Italy
magillo@dibris.unige.it

POST PRINT

This paper has been published on Lecture Notes in Computer Science N.13363,
Pattern Recognition and Artificial Intelligence – Third International Confer-
ence, ICPRAI 2022 – Paris, France, June 1–3, 2022 – Proceedings, Part I
https://link.springer.com/chapter/10.1007/978-3-031-09037-0 43/

Abstract

We propose a new formula for computing discrete geometric moments
on 2D binary images. The new formula is based on the inclusion-exclusion
principle, and is especially tailored for images coming from computer art,
characterized by a prevalence of horizontal and vertical lines. On the
target class of images, our formula reduces the number of pixels where
calculations are to be performed.

1 Introduction

Geometric moments are a classic tool in image processing and pattern recogni-
tion. Based on geometric moments of order up to three, Hu [4] introduced a set
of quantities, invariant to similarity transformations (translation, scaling and
rotation), through which numerous shape descriptors have been defined. Many
formulas for moments computation have been proposed (for a review, see [3]).
We propose another one, based on inclusion-exclusion, i.e., on the sum of signed
moments of overlapping axis-aligned rectangles. Our formula is especially suit-
able for images where the objects have a prevalence of vertical and horizontal
lines in their contour. This is the case of most computer-produced art, including
icons, signals, logos, etc.

1

2 Background Notions

We consider a bi-dimensional world having two colors, black and white, where
the object of interest is black, and the background is white. This world can be
continuous or digital. In the latter case, the world is an image, i.e., a raster of
N ×M pixels, each either black or white.

2.1 Geometric (Cartesian) Moments

For an object O in the continuous world, its geometric moment of order p + q
is defined as

mp,q(O) =
∫
O

xpyqdxdy.

For a digital object O, the geometric moment is usually approximated by

mp,q(O) =
∑

(i,j)∈O

ipjq. (1)

When the digital object is a rectangle R composed of pixels centered at points
in [I, J]× [K,L] ∩ N2, with I, J,K,L integers,

mp,q(R) =
J∑

i=I

ip
L∑

j=K

jq = (Sp(J)− Sp(I − 1)) · (Sq(L)− Sq(K − 1)), (2)

where Sp and Sq denote the sum of exponentials, defined as Sk(n) =
n∑

h=1

hk.

In particular, if I = K = 1 then the rectangle R(J, L) is determined by its upper
right vertex with coordinates (J + 1

2 , L+ 1
2) and Formula (2) becomes

mp,q(R(J, L)) =
J∑

i=1

ip
L∑

j=1

jq = Sp(J) · Sq(L). (3)

The sums Sk of exponentials, for k ≤ 3 (which are the relevant values needed
for moment invariants), are given by S0(n) = n, S1(n) = n(n + 1)/2, S2(n) =
n3/3 + n2/2 + n/6, S3(n) = n4/4 + n3/2 + n2/4.

The sums Sk of exponentials, for k ≤ 3 (which are the relevant values needed
for moment invariants), are given by S0(n) = n, S1(n) = n(n+1)

2 , S2(n) =
n3

3 + n2

2 + n
6 , S3(n) = n4

4 + n3

2 + n2

4 .

2.2 Green’s Theorem

Green’s theorem gives a connection between a double integral over a simply
connected region and the line integral along the boundary of the region. We
review briefly Green’s theorem in the continuous case, and its discrete version.

Cy=1,Dy=0

Cy=1,Dy=−1 Cy=0,Dy=1Cy=Dy=0

O+O−

Figure 1: Left: the values of CY and DY for a run consisting of more pixels
(top) or of just one pixel (bottom); only pixels starting or ending a run give a
non-zero contribution to the moments. Right: black pixels belonging to ∂O+

and white pixels belonging to ∂O− in the same configuration.

If P and Q are continuous functions of two variables with continuous partial
derivatives over a simply connected domain O with piece-wise smooth simple
closed boundary ∂O, the continuous Green’s theorem states that∫

∂O

Pdx+Qdy =
∫
O

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

with ∂O oriented counterclockwise. When applied to the computation of mo-
ments, Green’s theorem is used to convert the double integral to a (non-unique)
line integral. One (often used) solution of

xpyq =
∂Q

∂x
− ∂P

∂y
,

is P = 1
p+1x

p+1yq and Q = 0 [14].
The discrete version of Green’s theorem, in the formulation proposed by

Tang [13], states that∑
(i,j)∈O

f(i, j) =
∑

(i,j)∈C(O)

(Fx(i, j)DY (i, j) + f(i, j)CY (i, j)) , (4)

where C(O) is the set of contour pixels of O (i.e., the pixels of O that are edge-

adjacent to at least one white pixel), Fx(i, j) =
i∑

n=0
f(n, j), DY (i, j) = 1 or −1

if (i, j) is the first or last pixel of a run (a maximal set of contiguous black pixels
in one row) with length > 1, otherwise it is 0; CY (i, j) = 1 if (i, j) is the first
pixel of a run, otherwise it is 0 (see Figure 1).

An equivalent formulation of the discrete version of the Green’s theorem,
proposed by Philips [6], states that∑

(i,j)∈O

∇xf(i, j) =
∑

(i,j)∈∂O+

f(i, j)−
∑

(i,j)∈∂O−

f(i, j), (5)

where ∇xf(i, j) = f(i, j) − f(i − 1, j) and ∂O+ is the set of black pixels with
white right neighbor, while ∂O− is the set of white pixels with black right
neighbor (see Figure 1).

3 Related Work

We are interested in the exact computation of discrete moments of digital
objects. The relevant algorithms [3] either decompose the object into non-
overlapping simple shapes, or they use some form of the discrete Green’s theo-
rem.

3.1 Decomposition-Based Algorithms

Algorithms in this class work on a decomposition of the object O, contained
in the image, into non-overlapping rectangles. They are either designed for an
image encoded in a specific data structure (quadtree [7] or run-length [10, 11,
16]) or they compute a decomposition in a pre-processing step [9, 12].

The δ-method proposed by Zakaria et al. [16] computes low-order moments
of horizontally convex objects (i.e., with at most one run in each row). Li
[5] generalized this algorithm to non-convex objects [2]. Spiliotis and Mertzios
[10, 11] proposed another extension of [16], which first decomposes an object
into disjoint rectangular blocks by merging consecutive runs of equal spread and
then computes the discrete moments of arbitrary order on the rectangles.

Sossa et al. [9] decompose the object into non-overlapping squares using
morphological erosion. Their algorithm works also for objects with holes. Suk
and Flusser [12] use distance transform to obtain the decomposition into squares.

The pre-processing stage, necessary to decompose the object, is expensive.
Decomposition methods are convenient only if the object is compact (if it can
be partitioned into a small number of squares) and a large number of moments
is to be computed [12].

3.2 Boundary-Based Algorithms

Tang [13], Philips [6] and Yang and Albregtsen [15] proposed to use the discrete
Green’s theorem to compute low-order moments. In both formulas coming from
the discrete Green’s theorem (see Formulas (4) and (5) in Section 2.2), the only
pixels giving a non-zero contribution to the sum are those lying on the contour
of the object O, i.e, the pixels of O that are edge-adjacent to at least one white
pixel.

The algorithm by Tang works on the cyclic sequence (i0, j0), . . . (il, jl) of the
contour pixels, which is given as a contour chain code. The used formula comes
from (4) by taking f(i, j) = ipjq. This gives

Fx(in, jn) =
in∑

h=0

f(h, jn) =
in∑

h=0

hpjq
n = jq

nSp(in),

and

mp,q(O) =
∑

(i,j)∈O

f(i, j) =
∑

(i,j)∈O

ipjq

=
l−1∑
n=0

(Fx(in, jn)DY (in, jn) + f(in, jn)CY (in, jn))

=
l−1∑
n=0

(Fx(in, jn)DY (in, jn) + ipnj
q
nCY (in, jn)).

(6)

The algorithm by Philips [6] works on the runs, and applies the alternative
formulation (5) of the discrete Green’s theorem. The algorithm classifies the
pixels during a raster scan. For the moment computation, Formula (5) is con-
sidered with f(i, j) = g(i)jq, where g(i) is such that ∇xg(i) = ip. The moments
are computed as

mp,q(O) =
∑

(i,j)∈∂O+
Sp(i)jq −

∑
(i,j)∈∂O−

Sp(i)jq, (7)

where ∂O+ is the set of end pixels of the runs, and the immediate right neighbors
of white pixels in ∂O− are start pixels of the runs (see Figure 1).

The obtained formula is the same as that of the δ-method of Zakaria et al.
[16] (for horizontally convex objects), as formula (5) is equivalent to

∑
(i,j)∈O

f(i, j) =
∑

(i,j)∈∂O+

i∑
h=0

f(h, j)−
∑

(i,j)∈∂O−

i∑
h=0

f(h, j).

The algorithm by Yang and Albregtsen [15] considers the boundary of O
(consisting of the edges between black and white pixels) instead of the contour
of O (consisting of pixels). For horizontal edges, the term containing CY [13]
vanishes. For vertical edges, DY = ±1 if the incident black pixel is the end
pixel or the start pixel of a run, respectively. The final obtained formula is the
same as that by Philips, but in [15] it is embedded within a contour following
algorithm.

Flusser [1] and Flusser and Suk [2] improve on the algorithm by Philips
by pre-calculating the sums Sk(n), i.e., the integrals over the horizontal runs
starting at the left image border. Sossa et al. [8] improved on the algorithm by
Philips by computing some moments from runs in the x-direction (if q > p), and
others from runs in the y-direction (if q < p) and simplifying the formulas by
expressing them in terms of the pixels in O. Contour pixels are classified through
the contour chain code. For objects with holes, the moment contributions of
inner contours are subtracted from that of the outer contour.

4 Our Formula

We suppose that the object O is in the first quadrant, and contained in a
rectangle of size N × M . That is, O is a set of (black) pixels with integer
coordinates (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ M . We pose no restrictions

−1−1+1 +1 +2 −2 −1 −1+1+1

Figure 2: Various configurations defining the corner vertices. The shown coef-
ficient is associated with the lower left pixel of the configuration.

on the configuration of black pixels, so the object does not need to be (simply)
connected, or convex.

The coordinates of the four vertices of the pixel (i, j) are (i± 1
2 , j ±

1
2). We

consider the boundary ∂O as a set of line segments at inter-pixel level. We
define the corner vertices of O as those vertices v such that the four incident
pixels of v are not all white or all black, and are not two edge-adjacent white
pixels and two edge-adjacent black pixels. The configurations of corner vertices
are shown in Figure 2.

4.1 The Proposed Formula

We decompose the image into overlapping axis-aligned rectangles. Each rect-
angle is defined by the vertex (1

2 ,
1
2) and by one corner vertex (J + 1

2 , L + 1
2)

of O. Figure 3 shows an object O and the considered rectangles. According
to Formula (3), the moment of the rectangle associated with the corner vertex
(J + 1

2 , L+ 1
2) is equal to Sp(J) · Sq(L).

The moments of O are then computed from rectangle moments through a
simple inclusion-exclusion principle. We sum the moments of rectangles for each
corner vertex in the boundary of O with the appropriate coefficient, shown in
Figure 2. Our formula for moment computation can be summarized as:

mp,q(O) =
∑

(x,y)∈∂O

V (x, y) · Sp(x− 1
2

) · Sq(y − 1
2

) (8)

where V (x, y), called corner code, is non-zero for corners only, and its values
are shown in Figure 2. Note that (x− 1

2 , y−
1
2) are the coordinates of the pixel

having (x, y) as its upper right corner.
For the sample object O in the upper part of Figure 3, m0,0(O) = 8. We

compute m0,0(O) as the sum over all the (non-degenerate) rectangles (see Figure
3, bottom), and therefore we get +12− 6 + 4− 1 + 2− 8 + 5 = 8.

4.2 Proof of correctness

Now, we prove that the value mR
p,q(O), computed by our Formula (8) is correct,

i.e., equal to mp,q(O), for any object O. The proof is by induction on the
number k of pixels in O. For the base case, k = 0, O is empty and trivially
mR

p,q(O) = 0 = mp,q(O).
We suppose that the formula is correct for objects with up to k pixels, k ≥ 0,

and let O be an object with k+ 1 pixels. Let P = (i, j) be the rightmost of the

+2

+12

+5

2

...

1

2 ...1

+1

+1

+1

−1

+1+1

(1/2, 1/2)

(N+1/2, M+1/2)
−1

−1

−2

+1−1

+4
−6

−1−8

+1

−1

Figure 3: Top: An object O consisting of 8 pixels, the limits N,M , its 13
corner pixels (marked with a white dot) with the coefficient of each. Bottom:
the rectangles corresponding to each corner pixel (with the exception of those
having I = 0 or J = 0, which are thus null rectangles), with the values of the
associated summands in m0,0(O).

QP4 P2

P3

v4

v3 v1

v2

i

j P

contribution
vert. config. O P O′

v1
v1

P
1 1 0

v3
v3

P3 P
-1 -1 0

v3
v3

P3 P
0 -1 1

v2
P2 QQ

v2
P

-2 -1 -1

v2
v2

P2 Q

P

0 -1 1

v2
v2

P2 Q

P

-1 -1 0

v2
P2

v2

Q

P

-1 -1 0

...

contribution
vert. config. O P O′

v4
P2P4

P3
v4

P

2 1 1

v4
v4

P4 P2

P3 P

0 1 -1

v4
P4

P3
v4

P2

P

1 1 0

v4
P2

v4

P4

P3 P

1 1 0

v4
P2P4

P3
v4

P

1 1 0

v4
P4 P2

P3
v4

P

-1 -2 1

v4
P4 P2

P3
v4

P

0 1 -1

v4
P2P4

P3
v4

P

0 1 -1

1

Figure 4: Inductive step of the proof. Left: empty pixels are white, dashed
pixels P2, P3, P4 and Q can be black or white. Right: the contribution of each
vertex v1, v2, v3, v4 to the moment of O, of P , and of O′ = O \P , in all possible
configurations.

uppermost pixels in O. This means that the three vertex-adjacent pixels above
P , and the one to the right of P are white (see Figure 4).

Let us remove P from O, obtaining O′. By inductive hypothesis, our formula
computes correctly the moments of O′ and of P . Since moments are additive,
we can compute mp,q(O) as mp,q(O′) + mp,q(P), i.e., as mR

p,q(O′) + mR
p,q(P).

We show that this is equal to mR
p,q(O).

Both mR
p,q(O′)+mR

p,q(P) and mR
p,q(O) are sums of corner contributions, with

the coefficients shown in Figure 2. Differences occur only at vertices v1, v2, v3, v4
(see Figure 4). Each such vertex vl is a corner in P , while it may or may not
be a corner in O and O′. The table in Figure 4 presents all possible cases, i.e.,
all possible configurations of pixels incident to vl, for l = 1 . . . 4, and shows the
contribution of vl to mR

p,q(O), mR
p,q(P), and mR

p,q(O′).
As an example, let us consider the upper of the two rows concerning the

contribution of the vertex v3; in such case, v3 is a corner in O and in P while
it is not a corner in O′; its contribution has coefficient −1 in mR

p,q(O) and in
mR

p,q(P), and 0 in mR
p,q(O′). From the table, we see that the contribution of the

vertex vl to mR
p,q(O) (first numeric column) is always equal to its contribution

to mR
p,q(O′) + mR

p,q(P) (sum of the last two columns). Therefore mR
p,q(O′) +

mR
p,q(P) = mR

p,q(O) and thus mR
p,q(O) = mp,q(O).

5 Experimental Validation

The contribution of this paper is in Formula (8). The used formula is just one
component of a moment computation algorithm. Other components are the
format of the input image and the procedure for pixel scanning. For example,
an algorithm may scan a run-length encoded image, or it may follow a contour
chain code, etc. Here, we consider those computational costs of an algorithm,
which depend on the used formula: the number of pixels giving a non-zero con-
tribution to the moment, and the number of arithmetic operations performed.
For comparing our formula with others, we have embedded it into a simple raster
scan. The implementation is in C language, using a library for big integers from
https://github.com/dandclark/BigInt.

In Subsection 5.1, we compare our formula with other representatives of the
same class, i.e., boundary-based ones (see Section 3.2). In Subsection 5.2, we
compare it with a representative of the decomposition-based class (see Section
3.1).

5.1 Comparison with other boundary-based formulas

We compare our new Formula (8) with two classical formulas based on the
discrete Green’s theorem, namely Formula (6) used by Tang and Formula (7)
used by Philips. We inserted the formulas into a simple image scanning algo-
rithm. Being boundary-based, such formulas could be inserted into an algorithm
operating on runs or contours. Our choice was guided by simplicity of imple-
mentation.

computeMoment(p, q)
1 m = 0 // the moment of order p+q
2 for j = 1 to M
3 a = 0 // the contribution of row j
4 for i = 1 to N
5 c = coefficient(i,j)
6 if (c not zero)
7 a = a + c * ex(i) // add the contribution of pixel (i,j)
8 m = m + a * ey(j) // add contrib. of row j
9 return m // the moment of order p+q

Figure 5: General pseudocode of the algorithm used to test the formulas.

All the three considered formulas can be summarized as

mp,q =
∑
i,j

(coefficient(i, j) · ex(i) · ey(j))

or equivalently:

mp,q =
∑

j

(
ey(j) ·

∑
i

(coefficient(i, j) · ex(i))

)
.

For our Formula (8), the coefficient is the corner code V (i + 1
2 , j + 1

2) (see
Section 4 and Figure 2) and ex(i) = Sp(i), ey(j) = Sq(j). For Formula (6),
the coefficients are actually two, Dy and Cy (see Section 2.2 and Figure 1),
ey(j) = jq, while the inner contribution of the row, i.e., coefficient(i, j) · ex(i),
consists of two terms Dy ·Sp(i) and Cy · ip. For Formula (7), the coefficient is 1
or −1 if (i, j) belongs to ∂O+ or ∂O−, respectively (see Section 2.2 and Figure
1), ex(i) = Sp(i) and ey(j) = jq.

The general pseudocode of the algorithm used for testing the formulas is
shown in Figure 5, where we assumed that the image containing the object
has size N × M , column coordinates are i ∈ [1, N] and row coordinates are
j ∈ [1,M].

All three formulas need the values of Sk(n). Similarly to [1] and [2], all such
values are pre-computed and stored in a matrix.

Our formula is especially suited for objects bounded mostly by axis-parallel
lines, and therefore having few corners. Objects with such characteristics are
common products of computer art, such as icons, signals, logos, etc. We consid-
ered a test set consisting of 56 icons from https://www.flaticon.com/free-icons/
(see Figure 6), and their rotated versions, obtained by exchanging rows and
columns. On such 112 test inputs, we computed moments mp,q with p+ q ≤ 3.

We compared the number of pixels contributing to the moment computation
(i.e., those with a non-zero coefficient), and the number of performed multipli-
cations and additions (not including the operations needed to compute the sums
of exponentials, that are the same for the three formulas). Smaller numbers cor-
respond to more efficient formulas. Formula (6) showed to be less efficient than

1

Figure 6: Test inputs for the experiments. Each icon was used twice, the second
time with a rotation of 90 degrees. Icons are sorted from the best to the worst
performance of our formula on them.

Formula (7), therefore in the plots of Figure 7 we compare our Formula (8) with
(7) used by Philips. Most dots (precisely, 88 over 112) are above the bisecting
line of the first quadrant, meaning that, on the corresponding test inputs, our
formula performs better. The ratio of the number of contributing pixels with
our formula over the one by Philips ranges from 0.05 to 1.85, with an average
value around 0.67. The ratio of the number of operations ranges from 0.05 to
1.68, with an average value around 0.62.

The icons in Figure 6 are sorted from the one giving the best performance
(in the top-left corner, where all boundary lines are axis-parallel) to the one
giving the worst performance (having no axis-parallel lines). In this last icon,
as well as in its rotated version, almost each black pixel is incident to a corner,
therefore our formula tests a large number of pixels. Such two input images are
the two dots at the extreme right side of the plots in Figure 7.

5.2 Comparison with the decomposition-based approach

We have chosen for the comparison the algorithm by Spiliotis and Mertzios [11],
as it is the fastest in its class [3]. We applied the linear-time decomposition
algorithm in [11], based on grouping runs having the same extension on conse-
cutive rows. Then, we computed the moment of each block with Formula (2)
for rectangles. This second stage is considered in the comparison.

The first plot in Figure 8 compares the number of operations performed for
moment computation by [11] and by our formula. As expected, [11] performs
fewer operations than us, thanks to the block decomposition built in the pre-
processing stage. Nevertheless, our number of operations is only between 1.5
and 2 times larger. The number of corners considered by our formula is about
three times the number of blocks in [11], as shown in the second plot if Figure

Arithmetic operations

0 5K 10K 15K 20K 25K
0

5K

10K

15K

20K

y = x

Contributing pixels

0 2K 4K 6K 8K 10K 12K
0

2K

4K

6K

8K

y = x

1

Figure 7: Comparison of Formula (7) by Philips versus our Formula (8). Left:
the number of operations (additions and multiplications) in the computation of a
single moment. Right: the number of pixels contributing to the computation of
moments (pixels with a non-zero coefficient). The horizontal axis is our formula,
the vertical one is Formula (7). Each dot is a tested image.

Arithmetic operations

0 2K 4K 6K 8K 10K 12K
0

1K

2K

3K

4K

y = x/3

Contributing entities

0 4K 8K 12K 16K 20K 24K
0

4K

8K

12K y = 2x/3

y = x/2

1

Figure 8: Comparison of Formula (2) applied to the rectangles of the block
decomposition by Spiliotis and Mertzios [11] versus our formula applied to the
original image. Left: the number of operations. Right: the number of blocks
in [11] versus our number of corners. The horizontal axis is our formula, the
vertical one is [11]. Each dot is a tested image.

8, with the last image of Figure 6 giving the exceptional ratio of 4.
If, on one hand, our formula doubles the number of necessary operations for

moment computation, on the other hand it can directly accept the input image
in many common encoding formats (raster, run-length, contour chain), while
the one in [11], as well as all decomposition-based ones, needs to build and store
the image block representation.

6 Summary and Future Work

We proposed a simple inclusion-exclusion based formula for the computation
of discrete geometric moments of 2D binary images, and we showed that it is
suitable for images with boundary composed mainly of horizontal and vertical
lines. Experiments show that our formula performs fewer arithmetic operations
than other boundary-based formulas. Compared with the decomposition-based

approach, it performs a limited amount of extra operations, but methods in
this class need to pre-process the given image, while our formula can compute
the moments directly. We plan to extend this work to the computation of
exact continuous geometric moments in 2D, as well as to images in arbitrary
dimensions.

7 Acknowledgments

This research has been partially supported by the Ministry of Education, Science
and Technological Development through project no. 451-03-68/2022-14/ 200156
”Innovative scientific and artistic research from the FTS (activity) domain”.

References

[1] J. Flusser. Fast Calculation of Geometric Moments of Binary Images.
In 22nd Workshop on Pattern Recognition and Medical Computer Vision
(OAGM), pages 265–274, 1998.

[2] J. Flusser and T. Suk. On the Calculation of Image Moments. Technical
Report 1946, Institute of Information Theory and Automation, Academy
of Sciences of the Czech Republic, 1999.

[3] J. Flusser, T. Suk, and B. Zitova. 2D and 3D Image Analysis by Moments.
John Wiley & Sons, Ltd, 2016.

[4] M.-K. Hu. Visual pattern recognition by moment invariants. IRE Trans.
Information Theory, 8(2):179–187, 1962.

[5] B. C. Li. A new computation of geometric moments. Pattern Recognition,
26(1):109–113, 1993.

[6] W. Philips. A new fast algorithm for moment computation. Pattern Recog-
nition, 26(11):1619–1621, 1993.

[7] M. Shneier. Calculations of Geometric Properties Using Quadtrees. Com-
puter Graphics Image Processing, 16:296–302, 1981.

[8] J. H. Sossa-Azuela, I. Mazaira-Morales, and J. M Ibarra-Zannatha. An
Extension to Philips’ Algorithm for Moment Calculation. Computacion y
Sistemas, 3:5–16, 1 1999.

[9] J. H. Sossa-Azuela, C. Yáñez-Márquez, and J. L. Dı́az-de-León S. Comput-
ing geometric moments using morphological erosions. Pattern Recognition,
34(2):271–276, 2001.

[10] I. M. Spiliotis and B. G. Mertzios. Real-time computation of 2-d moments
on block represented binary images on the scan line array processor. In 8th
European Signal Processing Conference, EUSIPCO, pages 1–4, 1996.

[11] I. M. Spiliotis and B. G. Mertzios. Real-time computation of two-
dimensional moments on binary images using image block representation.
IEEE Trans. Image Processing, 7(11):1609–1615, 1998.

[12] T. Suk and J. Flusser. Refined Morphological Methods of Moment Com-
putation. In 20th International Conference on Pattern Recognition, ICPR,
pages 966–970, 2010.

[13] G. Y. Tang. A Discrete Version of Green’s Theorem. IEEE Trans. Pattern
Anal. Mach. Intell., 4(3):242–249, 1982.

[14] J. M. Wilf and R. T. Cunningham. Computing region moments from
boundary representations. Technical Report NASA-CR-162685), N80-
16767, National Aeronautics and Space Administration Jet Propulsion Lab-
oratory California Institute of Technology Pasadena, California, 1979.

[15] L. Yang and F. Albregtsen. Fast computation of invariant geometric mo-
ments: a new method giving correct results. In 12th IAPR International
Conference on Pattern Recognition, Conference A: Computer Vision & Im-
age Processing, ICPR, Volume 1, pages 201–204, 1994.

[16] M. F. Zakaria, L. J. Vroomen, P J. Zsombor-Murray, and J. M. H. M. van
Kessel. Fast algorithm for the computation of moment invariants. Pattern
Recognition, 20(6):639–643, 1987.

