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Abstract

A 2D binary image is well-composed if it does not contain 2 × 2 blocks of two diagonal black and
two diagonal white pixels, called critical configurations. Some image processing algorithms are simpler on
well-composed images. The process of transforming an image into a well-composed one is called repairing.

We propose a new topology-preserving approach, which produces two well-composed images starting
from an image I depending on the chosen adjacency (vertex or edge adjacency), in the same original square
grid space as I. The size of the repaired images depends on the number and distribution of the critical
configurations. A well-composed image I is not changed, while in the worst case the size increases at most
two times (or four times if we want to preserve the aspect ratio). The advantage of our approach is in the
small size of the repaired images, with a positive impact on the execution time of processing tasks. We
demonstrate this experimentally by considering two classical image processing tasks: contour extraction and
shrinking.
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1 Introduction

We consider two dimensional black-and-white (binary) images, where black is foreground and white is back-
ground. A critical configuration is a block of 2× 2 pixels within an image, where two pixels are white and two
are black, in a chessboard configuration. An image with no critical configurations is called well-composed.
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The presence of critical configurations introduces ambiguity in the topology of the image, as the topological
(homological) properties of the foreground and of the background of the image (the number of connected
components and the number of holes) depend on the used adjacency type (edge- or vertex-adjacency, a.k.a.
4- or 8-adjacency). Opposite adjacency types must be used for foreground and background pixels in order to
maintain some similarity between continuous and digital topology.

Furthermore, many topological image analysis and processing algorithms are simpler and easier to implement
if their input image is known to be well-composed. For such reasons, the research community has been working
for years on the topic of image repairing, i.e., the process of transforming an arbitrary image into a well-composed
one. All the proposed approaches which preserve the image topology, increase the image size.

We propose a simple approach for topology-preserving image repairing, which is based on inserting new
rows or new columns inside the image, just where critical configurations are present. In this way, the growing
rate of image size depends on the number and distribution of critical configurations present in the image. We
introduce two algorithms based on such an approach. Algorithm A guarantees less than 200% of size growth
on all images, but modifies the aspect ratio. Algorithm B preserves the aspect ratio, but cannot guarantee the
same bound. The theoretical worst case growing rate is 400%, while it is much less in practical cases.

2 Background Notions

A 2D (square) grid [1, 2, 5, 6, 7] is a tessellation of the plane into closed unit squares (pixels) centered at points
in Z2, with edges parallel to the coordinate axes. Two types of adjacency relation are defined in the grid. Two
pixels that share an edge or a vertex are called 4- or 8-adjacent, respectively.

A 2D digital object O is a finite set of pixels in the square grid. The pixels in O are called black (foreground).
The pixels in the complement of O are called white (background). The carrier (or continuous analogue) of O is
the union (as point sets) of the pixels in O. We will denote it also as O.

A vertex v is critical for a 2D digital object O if v is incident to two white and two black pixels, where
black and white pixels alternate cyclically around v. The 2× 2 pixels incident with a critical vertex are called
a critical configuration, a.k.a. a gap.

3 Related Work

Several image repairing algorithms have been proposed. Here, we restrict our attention to the ones which
preserve the topology, and whose output is still in the square grid.

The method by Rosenfeld et al. [10] scales the image by factor 3 in both x and y directions. In the rescaled
grid, all black (white) pixels involved in a critical configuration are changed to white (black), for repairing the
image according to 8-adjacency (4-adjacency). An example is shown in Figure 1 (b).

The algorithm by Stelldinger et al. [11] increases the grid resolution twice in both coordinate directions,
by creating an additional square for each edge and each vertex in the grid. Therefore, the image size increases
four times. If 4-adjacency (8-adjacency) is considered for the black pixels, the squares corresponding to the
edges and vertices are black only if all the incident squares are black (at least one incident square is black). An
example is shown in Figure 1 (c).

The algorithm by Čomić and Magillo [3] produces the output in a new square grid, rotated 45 degrees
with respect to the original one and therefore called the (2D) diamond grid. The pixels of the diamond grid
correspond to the pixels and vertices of the original square grid. Thus, the image size is increased two times.
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(a) (b) (c) (d)

Figure 1: (A) A critical configuration and the way it is repaired by (b) Rosenfeld et al. [10], (c) Stelldinger
et al. [11], and (d) Čomić and Magillo [3]. The dashed pixels are black (white) for preserving 8-adjacency
(4-adjacency).
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Figure 2: When a critical configuration (marked with the red box) exists across the rows i and i+ 1, a new row
is inserted in between. The color of each pixel in the new row is copied from the row i + 1, but the two pixels
adjacent to those involved in the critical configuration (dashed) are both set to black or to white, for repairing
the image according to 8-adjacency or 4-adjacency, respectively.

Depending on the choice of the color of the pixels associated with the vertices, the repaired image is homotopy
equivalent with the original one with either 8- or 4-adjacency. An example is shown in Figure 1 (d).

4 Our Approach to Image Repairing

The idea is in a sense similar to [11], but, instead of adding a new row and a new column between each original
row and column, we add a new row (or column) only where some critical configuration exists. For each critical
configuration, one of the involved pixels changes color in the stretched image.

Our Algorithm A adds the minimum number of rows necessary to eliminate the critical configurations.
Algorithm B adds both rows and columns, with the aim of preserving the aspect ratio of the image.

4.1 Algorithm A

Our basic idea is shown in Figure 2. For each pair of consecutive rows i and i + 1 in the input image, such
that some critical configuration exists across them, we add a new row between i and i + 1. Such new row
is a copy of the row i + 1 in all pixels, with the exception of the pairs of consecutive pixels involved in a
critical configuration. The color of such pairs is set to black (white) to obtain an equivalent image according to
8-adjacency (4-adjacency).

Equivalently, we can add new columns instead of new rows. We first compute the number of necessary new
rows and the number of necessary new columns to be added, and then choose the option which gives the smaller
image size. Algorithm A, obtained from this simple idea, has the following good properties:

1. It preserves the image topology with 4- or 8-adjacency.
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Figure 3: The image is examined diagonally. While scanning a diagonal of pixels, we check if the upper-right
vertex of each pixel is critical.

2. The size of the repaired images is less than twice the size of the original one. In the worst case, for an
image of size N ×M , a new row will be added between any two rows, and the size of the image will
increase to N × (2M − 1).

3. The size increment depends on the number of critical configurations present in the input image. At most
one row is added for each critical configuration. Intuitively, this is the first image repairing algorithm
sensitive to the amount of repairing needed by the image.

The main drawback of Algorithm A is that the aspect ratio of the image is dramatically changed. So, the
output of Algorithm A is feasible for processing the image to compute other information, but not for displaying
it.

4.2 Algorithm B

In order to preserve the aspect ratio of the input image, Algorithms B adds both rows and columns in a
balanced way across the image. Some critical configurations will be repaired by inserting a row, and other
critical configurations by inserting a column.

We scan the image diagonally, as shown in Figure 3. Each time we find a critical configuration involving the
four pixels across the rows i, i + 1 and columns j, j + 1, we compare the aspect ratio of the original image with
that of the new image obtained with the already planned additions of rows and columns. We decide to add a
new row or a new column, based on the choice that keeps the new aspect ratio more similar to the original one.

Figure 4 shows the same image repaired by adding just rows or just columns, or by adding both rows and
columns.

Compared with Algorithm A, Algorithm B gives an aspect ratio which is very similar to the original one,
but it does not guarantee the same bound on size growth. In the worst case, a chessboard pattern, Algorithm
B would add a new row between any two rows, and a new column between any two columns. The image size
would increase from N ×M to (2N − 1)× (2M − 1), i.e., four times, as in [11].

5 Proof of Correctness

We show that the output of our repairing algorithms with respect to 8-adjacency is well-composed and homotopy
equivalent to O. The claim for 4-adjacency follows by duality [7]. We focus on the insertion of a new row. The
insertion of a column is symmetric. For the insertion of more rows (columns), it is sufficient to repeat the
reasoning. For simplicity, we assume the critical configuration is as in Figure 5.
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Input image Output of Alg. A Output of Alg. B

Figure 4: Test image flamingo at low resolution, and its repaired versions with Algorithms A and B. Critical
configurations in the input image, and added rows and columns in the repaired ones, are rendered in red. In
order to fit in the page, the images have been scaled 20 percent of their actual size.
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Figure 5: The configuration at a critical vertex (yellow). The color of the pixels of the new row is copied from
the bottom row. Only the cyan pixel is changed to black in order to repair the critical configuration.

5.1 Well-Composedness

We show that after processing the rows i and i+ 1, all critical configurations between them are removed and no
new critical configurations are created. Let X be the pixel in the duplicated row whose color is changed from
white to black (the cyan pixel in Figure 5), and let us consider the 3× 3 neighborhood of X. This color change
will remove a critical configuration at the upper-right vertex of X (marked with the yellow dot), and will not
create a new critical configuration at any of the other three vertices of X, whatever is the color of A and of
B (the latter copied to C), as shown in Figure 5. The lower-right vertex of X is incident with exactly three
black pixels (X and the two black pixels involved in the critical configuration), its lower-left vertex is incident
with two 4-adjacent pixels of the same color (the pixels B and C) and its upper-left vertex is incident with two
4-adjacent black pixels (X and the one above it).

5.2 Homotopy Equivalence

Given a topological space X and its subspace A, a continuous function F : X × [0, 1] → X is a (strong)
deformation retraction of X onto A if F (x, 0) = x, F (x, 1) ∈ A, F (a, t) = a for all x ∈ X, a ∈ A and t ∈ [0, 1].
If a deformation retraction exists, then X and A are homotopy equivalent.

We show the homotopy equivalence by constructing a deformation retraction from the three rows processed
at each step of the algorithms to the two rows of the original image.

Let f(P, t) = (1− t)P + tP ′ for each point P in each added black pixel X, where P ′ is its radial projection
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Figure 6: The cyan pixel has been set to black in order to repair a critical configuration. The black dot is a
point P inside a black pixel and the white dot is its image P ′ through f in (a) and through h in (b). The red
dot is the center of the white pixel.

on the border of that pixel from the center of the pixel below X if the pixel to the left of X is black, or from
the center of the lower left neighbor of X if that pixel is white (see Figure 6 (a)). Let f(P, t) = P for all other
points in the black pixels. Let h(P, t) = (1 − t)P + tP ′ for each point P in each black pixel in the third row,
where P ′ is its vertical projection on the upper edge of that pixel, and let h(P, t) = P for all other points in the
black pixels in the first two rows (see Figure 6 (b)). The required deformation retraction is the composition of
the maps f and h.

6 Experimental results and discussion

We used ten images from the Pixabay repository [9], with two different resolutions for each image. The images
were gray-scale with gray values ranging from 0 to 255, and they have been converted to binary images by
applying a threshold equal to 128 or 64 (depending on the darkness of the image). The low resolution versions
of the images are shown in Figure 7.

In Section 6.1 we show and comment the results of Algorithms A and B. In Section 6.2 we consider the impact
of the size of the repaired images in further processing algorithms, including a comparison with images repaired
by other algorithms at the state of the art. All presented results refer to image repairing with 8-adjacency. The
numbers would be the same with 4-adjacency, the only difference being the color of some pixels.

6.1 Results of Algorithms A and B

We developed a prototype implementation of Algorithms A and B, in Python. The results of the two algorithms
on the test images are shown in Table 1. The suffix L or H refers to the same image at low and high resolution,
respectively.

As expected, with Algorithm A, the size of all repaired images is less than twice the original one, and it
depends heavily on the number of critical configurations in the input image. Also, the aspect ratio is relevantly
changed. The size increment seems to be connected more with the number of critical configurations and less to
resolution.

With Algorithm B, the aspect ratio is almost preserved, with changes occurring from the second decimal
digit. On half of the images, the increment of image size is comparable to Algorithm A. On the other half,
the size increases up to three times or more, especially on images with fine-grained patterns and many critical
configurations (cfr. birch, bird and train in Figure 7).
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Figure 7: Our binary versions of the original images. The shown images correspond to the low resolution and
are scaled 15 percent to fit the page width.

6.2 Processing the repaired images

Image repairing is often used as a preprocessing stage, as many image analysis algorithms are simpler on well-
composed images. In the following, we study the impact of the size of the repaired images produced by our
Algorithms A and B and by the algorithms in [11] and [3] on the performance of image processing algorithms.
We have chosen these competitors because they use the smallest additional memory among those which preserve
image homotopy and produce an image in the square grid.

The algorithm by Stelldinger et al. [11] produces a repaired image whose size is four times the original
one. The algorithm by Čomić and Magillo [3] doubles the size of the image, but the repaired image is in a grid
rotated by 45 degrees. The size of the images repaired by Algorithms A and B is as in Table 1.

As meaningful examples of image processing tasks, we consider contour extraction and shrinking, i.e., a very
simple and a rather complex task. A contour is a circular list of black pixels 8-adjacent to at least one white
pixel, and 4-adjacent to the previous black pixel in the list (see [8], Chapter 7.5). Shrinking iteratively changes
the color of simple (removable) black pixels into white (see [5], Chapter 16.2). For these programs, we used the
C implementation from [3]. The results, obtained on a PC equipped with an Intel CPU i7-2600K CPU at 3.4
GHz with 32 GB RAM, are in Tables 2 and 3.
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Table 1: Results with Algorithms A and B. Aspect ratios are rounded to the fourth decimal digit. The percentage
of size growth is rounded to integer.

input version A version B
crit. aspect aspect % incr. aspect %

Image size conf. ratio size ratio size size ratio size
artL 640×426 378 1.5023 640×644 0.9938 151 785×523 1.5010 151
artH 1920×1280 5390 1.5 1920×2403 0.7990 188 2957×1972 1.4995 237
birchL 640×426 8253 1.5023 640×851 0.7521 200 1209×805 1.5019 257
birchH 1920×1279 74917 1.5012 1920×2557 0.7509 200 3702×2466 1.5012 372
birdL 640×426 1283 1.5023 640×801 0.7990 188 968×644 1.5031 229
birdH 1920×1279 8465 1.5012 1920×2531 0.7586 198 3217×2143 1.5012 280
carL 640×401 1003 1.5960 640×714 0.8964 178 928×581 1.5972 210
carH 1920×1205 5617 1.5934 1920×2314 0.8297 191 3037×1906 1.5934 250
flamingoL 425×640 175 0.6641 553×640 0.8641 130 480×722 0.6648 127
flamingoH 1276×1920 565 0.6646 1663×1920 0.8661 130 1441×2169 0.6644 128
fogL 640×235 320 2.7234 640×378 1.6931 161 786×289 2.7197 151
fogH 1920×706 2170 2.7195 1920×1298 1.4792 184 2655×977 2.7175 191
kiteL 640×524 717 1.2214 640×826 0.7748 158 824×674 1.2226 166
kiteH 1920×1571 3147 1.2222 2928×1571 1.8638 153 2549×2085 1.2225 176
staircaseL 640×417 1012 1.5348 640×646 0.9907 155 830×541 1.5342 168
staircaseH 1920×1253 6946 1.5323 1920×1970 0.9746 157 2598×1695 1.5327 183
stargazerL 640×426 108 1.5023 716×426 1.6808 112 690×459 1.5033 116
stargazerH 1920×1280 343 1.5 1920×1507 1.2741 118 2064×1377 1.4989 116
trainL 640×471 3438 1.3588 640×885 0.7232 188 1036×762 1.3596 262
trainH 1920×1421 15814 1.3512 1920×2752 0.6977 194 3235×2394 1.3513 284

Both processing tasks are faster on the images repaired by Algorithms A and B, than on the ones repaired
by [11]. On the output images of Algorithm A, they are faster than on the output images of [3] in all cases
with the exception of some images, where the times are comparable. On the images repaired by Algorithm B,
contour extraction and shrinking are faster than on the images repaired by [3] in half of the cases.

Repaired images by Algorithm B give a better performance in cases where the original image had a small
number of critical configurations (e.g., flamingo, fog, stargazer), but also in some other cases (e.g., kite). In
these latter cases, probably many critical configurations were aligned, and therefore repaired by adding a single
new row or column.

In presence of many critical configurations (e.g., birch, bird, car, train), the time for processing the output
images of Algorithm B can be up to twice w.r.t. [3] (e.g., see shrinking on birch and bird). In the presence of
few critical configurations, the opposite may happen (e.g., flamingo and stargazer). We remember that, unlike
Algorithms A and B, the algorithm in [3] rotates the grid.

7 Conclusion

We proposed two repairing algorithms having the advantages that the obtained well-composed images lie in the
square grid (thus, all existing image processing tools can be applied to the repaired images) and that the size
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Table 2: Execution times (in milliseconds) of contour extraction on the images repaired by the four algorithms.

1

Table 3: Execution times (in milliseconds) of shrinking on the images repaired by the four algorithms.

1

of the output is sensitive to the number of critical configurations in the input.
Algorithm A has the further advantage of a reduced size of the repaired images, compared with all previous

approaches. Its main drawback is a directional asymmetry: the repaired images are non-uniformly stretched
in either vertical or horizontal direction. This makes Algorithm A less suitable for tasks that require the
computation of numerical image properties such as area or perimeter, or of the Boolean operations on two
distinct images, while algorithms for the computation of the topological properties can benefit from it.

Algorithm B solves this drawback at the expense of a larger size of the repaired images, if many critical
configurations were present. It can be a good compromise for those cases where critical configurations are known
to be few (e.g., coming from rasterization of vector formats and conversion errors).

In the future, we plan to introduce a mechanism to balance the number of added black and white pixels, to
preserve the darkness/shininess of the image as well. This will improve the similarity of the repaired image with
he original one. We also plan to port our prototype implementation into an efficient programming language,
such as C.
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[4] R. González-Dı́az, M.-J.. Jiménez, and B. Medrano. 3D well-composed polyhedral complexes. Discrete
Applied Mathematics, 183:59–77, 2015.

[5] R. Klette and A. Rosenfeld. Digital geometry. Geometric methods for digital picture analysis. Morgan
Kaufmann Publishers, San Francisco, Amsterdam, 2004.

[6] T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, and
Image Processing, 48(3):357–393, 1989.

[7] L. J. Latecki, U. Eckhardt, and A. Rosenfeld. Well-Composed Sets. Computer Vision and Image Under-
standing, 61(1):70–83, 1995.

[8] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press, 1982.

[9] PIXABAY. Image repository. https://pixabay.com/en/photos/grayscale/.

[10] A. Rosenfeld, T. Y. Kong, and A. Nakamura. Topology-Preserving Deformations of Two-Valued Digital
Pictures. Graphical Models and Image Processing, 60(1):24–34, 1998.

[11] P. Stelldinger, L. J. Latecki, and M. Siqueira. Topological Equivalence between a 3D Object and the
Reconstruction of its Digital Image. IEEE Trans. Pattern Anal. Mach. Intell., 29(1):126–140, 2007.

10


