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Given a polyhedral grid (e.g., a cubic grid), we denote as a 3D image a set of black voxels, while other voxels
(background) are white. A 3D image is well-composed if its boundary surface is a 2-manifold. Intuitively, this
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Abstract

We propose an integrated data structure which represents, at the same time, an image in the cubic
grid and three well-composed images, homotopy equivalent to it with face-, edge- and vertex-adjacency.
After providing an algorithm to build the structure, we present examples showing how, thanks to such
data structure, image processing algorithms can be written in a transparent way w.r.t. the adjacency type.
Applications include rapid prototyping and teaching.
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Introduction

means that, at each point, the surface is locally topologically equivalent to a disc.

In the cubic grid, not all 3D images are well composed, as two black cubes may share just an edge or just a
vertex, and no face. Therefore, it is necessary to take into account three possible types of adjacency relations
(vertex-, edge- or face- adjacency) for the definition of homotopy-related properties, such as connectedness,

cavities or tunnels, and for the design of algorithms.



The process of transforming a 3D image in another one which is well-composed is called repairing. Recently
[3, 4], approaches have been proposed to repair a cubic image by transferring it into another polyhedral grid,
ensuring that the resulting image is homotopy equivalent to the original one, with respect to the chosen type of
adjacency relation, among the three possible ones. The resulting images are defined in polyhedral grids derived
from the cubic one, namely the Body Centered Cubic (BCC) grid and the Face Centered Cubic (FCC) grid.

These grids have been effectively used as viable alternatives to the cubic grid in computer graphics, rendering
and illumination [2, 9, 21], ray tracing and ray casting [12, 13, 14], discrete geometry [5, 6], voxelization [10],
reconstruction [7, 18], simulation [20] distance transform [23], fast Fourier transform [24], and a software system
for processing and viewing 3D data [8].

We propose a unified data structure which represents simultaneously the given 3D image in the cubic grid
and its repaired versions in the BCC and FCC grids. Algorithms operating on any of the repaired images can
be written in a simple and transparent way.

This paper is organized as follows. In Section 2, we introduce 3D grids and well-composed images. In Section
3, we describe the proposed unified data structure and in Section 4 a construction algorithm unifying the ones
in [3, 4]. In Section 5 we show how our unified data structure allows for writing image processing algorithms
that may work with any of the three adjacency types in a transparent manner. Finally, in Section 6, we draw
concluding remarks.

2 3D Grids and Well-composed Images

In general, we can define a 3D grid as any partition of the 3D space into convex polyhedral cells, called voxels.
The voxels of a grid naturally define their faces (polygons where two voxels meet), edges (segments where three
or more faces meet), and vertices (points where three or more edges meet). Voxels, faces, edges and vertices
constitute a cell complex associated with the grid. Adjacency and incidence relations in the grid are then
defined.

Within a grid, an image [ is a finite set of voxels. Conventionally, we call black the voxels belonging to I
and white the voxels belonging to its complement ¢ (background). An image I is (continuously) well-composed
[17] if the boundary surface of I, i.e., the surface made up of faces that are incident with exactly one black
voxel, is a 2-manifold. Recall that a 2-manifold is a topological space in which each point has a neighborhood
homeomorphic to the open unit disc.

The cubic grid, made up of unit cubes, can be obtained by placing a seed at each 3D point with integer
coordinates, and considering the Voronoi diagram of such seeds. The resulting Voronoi cells are cubes. Two non-
disjoint cubes may share exactly one face (and all its edges and vertices), exactly one edge (and its two vertices)
and no face, or exactly one vertex and no edge or face. This leads to three types of adjacency relations: face-
adjacency, edge-adjacency, and vertex-adjacency, respectively. As a cube has six face-adjacent cubes, eighteen
edge-adjacent cubes, and 26 vertex-adjacent cubes, the three adjacency types are also known as 6-adjacency,
18-adjacency, and 26-adjacency, respectively.

An image I in the cubic grid is (digitally) well-composed [17] if and only if there is no occurrence of either
critical edges or critical vertices (see Figure 1). A critical vertex v is a vertex having two (six) incident black
cubes and six (two) incident white cubes, where the two black (white) cubes share just the vertex v. A critical
edge e is an edge having two incident black cubes and two incident white cubes, where the two black (white)
cubes share just the edge e. The two characterizations of well-composed images (continuous and digital) in the
cubic grid are equivalent [1].

At critical edges and vertices, the image has different topology if we consider it with 6-, 18-, or 26—adjacency.
Therefore, algorithms on general cubic images need to take all the possible critical configurations into account,



Figure 1: Two black cubes sharing a critical vertex and a critical edge. The configurations with exchanged cube
colors are also critical.

Figure 2: Placement of seeds and growing process of seeds to create the BCC grid (left) and the FCC grid
(right).

with a different treatment depending on the considered adjacency type. Moreover, for consistency reasons, an
image I and its complement ¢ need to be considered with different types of adjacency relations, for example
6-adjacency for I and 26-adjacency for I°¢.

The Body Centered Cubic (BCC) grid is obtained from the cubic grid by placing a seed at the center of
each cubic voxel, and a seed at each cube vertex. In the Voronoi diagram of such seeds, the Voronoi cells are
truncated octahedra (see Figure 2), and these are the voxels of the BCC grid. The BCC grid has just one type
of adjacency, i.e., face-adjacency, and any 3D image in such grid is well-composed. In fact, if two truncated
octahedra share a vertex, they must share a face as well.

The Face Centered Cubic (FCC) grid is obtained from the cubic grid by placing a seed at the center of each
cubic voxel, and a seed at the midpoint of each edge. In the Voronoi diagram of such seeds, the Voronoi cells
are rhombic dodecahedra (see Figure 2), and these are the voxels of the FCC grid. Not all images in the FCC
grid are well-composed, as pairs of rhombic dodecahedra, sharing just a vertex and no face or edge, exist. On
the other hand, two rhombic dodecahedra cannot share an edge, without sharing a face as well.

Note that a subset of voxels in both the BCC and the FCC grid corresponds to the voxels of the cubic grid.
Other voxels of the BCC grid correspond to the vertices of the cubic voxels, while other voxels of the FCC grid
correspond to the edges of the cubic voxels.

In [3] (respectively, [4]), an algorithm has been proposed to transform an image I in the cubic grid into a
well-composed image in the BCC (FCC) grid, which is homotopy equivalent to I according to 6- or 26-adjacency
(18-adjacency). The BCC voxels (FCC voxels) corresponding to the cubic voxels maintain the same color they
had in the cubic grid. All other black BCC (FCC) voxels correspond to some of the vertices (edges) of black
cubes. The new data structure proposed here will store the original cubic image and all its repaired versions in
the BCC and FCC grids, in a compact way.



3 Data structure

We propose a unified data structure which can mark as black or white the cubic voxels (equivalently, the voxels
of the BCC and FCC grid corresponding to them), the FCC voxels corresponding to cube edges, and the BCC
voxels corresponding to cube vertices (with two marks, as they may get a different color in the repaired BCC
image, equivalent to the cubic one with 26- or 6-adjacency). In this way, we can represent the original 3D image
in the cubic grid and, simultaneously, its well-composed versions in the BCC and FCC grids.

Assuming that the cubic grid is made up of unit cubes centered at points with integer Cartesian coordi-
nates, we multiply all coordinates by two, so that we can identify all cubes, faces, edges, vertices, with integer
coordinates [16]: cubes have three even coordinates; vertices have three odd coordinates; edges have one even
and two odd coordinates (the even coordinate corresponds to the axis the edge is parallel to), and faces have
two even and one odd coordinate (the odd coordinate corresponds to the axis the face is orthogonal to).

Each cube has eight vertices, each shared by eight cubes. So, we can associate each cube with one of its
vertices, by convention the one with maximum Cartesian coordinates. If (z,y, z) denotes a cube, the associated
vertex is (z + 1,y + 1,2 + 1). Each cube has twelve edges, each shared by four cubes. So, we can associate
each cube with three of its edges, by convention the ones incident with the vertex with maximum Cartesian
coordinates. If (z,y, z) denotes a cube, the associated edges are (z,y+1, z+1), (z+1,y, 2+1), and (z+1,y+1, 2).

In a black and white (binary) image, the color of a cell (cube, edge or vertex) can be stored in just one bit:
1 for black and 0 for white. For representing the color of a cube, the color of the three associated edges, and
the two colors of the associated vertex, we need six bits, which fit in one byte. Given a triplet (4,7, k), with
i,7,k € Z3, the bits of the associated byte contain:

e bit 0 is the color of the cube b = (2i, 27, 2k), i.e., the color of the BCC and of the FCC voxels corresponding
to b;

e bits 1 and 2 are not used;

e bit 3 is the color of the edge e, = (2,25 + 1,2k + 1) of b, i.e., the color of the FCC voxel corresponding
to ez, in the equivalent well-composed FCC image with 18-adjacency;

o bit 4 is the color of the edge e, = (2i + 1,24, 2k + 1) of b, i.e., the color of the FCC voxel corresponding
to ey, in the equivalent well-composed FCC image with 18-adjacency;

e bit 5 is the color of the edge e, = (2i 4+ 1,25 + 1,2k) of b, i.e., the color of the FCC voxel corresponding
to e,, in the equivalent well-composed FCC image with 18-adjacency;

e bit 6 is the color of the vertex v = (2i+1,2j+1,2k+1) of b, i.e., the color of the BCC voxel corresponding
to v, in the equivalent well-composed BCC image with 26-adjacency;

e bit 7 is the color of the same vertex (i.e., the BCC voxel) v in the equivalent well-composed BCC image
with 6-adjacency.

We have developed our implementation in Python. Python is a high-level language providing the dictionary
as a built-in type. The implementation uses a dictionary, where the keys are tuples of three integers, and the
values are bytes. In another programming language, we would use a 3D matrix. For such purpose, we would
select a subset of Z3, for example we can consider the bounding box of black voxels in the cubic grid, plus an
extra layer of white voxels in all six directions. In addition, we would shift coordinates to ensure that they are
non-negative, and can thus be used as matrix indexes.



Given a cell ¢ = (z,y, z), which may be a cube, an edge, or a vertex (or, equivalently, given a voxel in
the cubic, FCC, or BCC grids), the dictionary key is obtained by simply dividing the coordinates of ¢ by two
with integer division. Figure 3 shows the Python code of the function returning the bit index, inside the byte,
storing the color of a cell. The two Python functions for reading and setting the color of a cell (z,y,2) are
shown in Figure 4. If not present in the dictionary, a triplet (¢, j, k) is considered as having byte 00000000 as
value. Therefore elements of the dictionary having zero value do not need to be stored. That is why, in Figure
4, a new element is added only if the value to be set is 1.

From the point of view of the spatial complexity, just one byte is stored for each cube belonging to the
bounding box of the object (plus a layer of white cubes around it), and the single bits inside it are used to code
the color of the other cells (BCC and FCC voxels corresponding to cube vertices and edges). As one byte is the
smallest storage unit, it is not possible to use less memory than this, even for representing just the color of the
cubes. Therefore, the storage cost of our unified data structure can be considered as optimal.

4 Integrated image repairing algorithm

The data structure, described in Section 3, can be filled by running the algorithms proposed in [3] and [4],
which specify the vertices and edges, respectively, to be set as black in order to have a well-composed image,
equivalent to the given one with 6-, 26- and 18-adjacency, depending on the case. In the following, we describe
a new integrated algorithm.

We consider a vertex v and two collinear incident edges e; and e extending in negative and in positive axis
direction from v, respectively (see Figure 5). Referring to such a configuration, we rewrite the rules used in [3]
and in [4] to decide whether (the BCC voxel corresponding to) v and (the FCC voxel corresponding to) e; must
become black. In [3], v becomes black if:

1. edge ey has four incident black cubes,

2. edge e; is critical;

3. edge e is critical, and edge e; does not have four incident white cubes;
4. v is a critical vertex;

Rule 1 also applies for producing an equivalent BCC image to the given one with 6-adjacency. These rules must
be applied for all three axes. Rule 4 is applied only when edges e; and es are parallel to the z-axis, otherwise
we would check it three times. The algorithm in [4] performs in two stages. In the first stage:

e if e; is incident with three or four black cubes, then e; becomes black;
e if ey is critical, then e; becomes black;

e in configurations where e; and ey are both critical, with two pairs of 6-adjacent black cubes, then two
more edges es and ey, incident with v, become black. Edge es is chosen conventionally, depending on the
supporting axis of e, e, and e4 is chosen in such a way that ez and e4 belong to the same two white
cubes (see [4] for details).

As before, these rules must be repeated for all three axes. The second stage examines all faces f shared by two
black cubes. If no edge of f is black, or exactly two opposite edges of f are black, then one (more) edge of f
becomes black. Such edge is chosen conventionally, depending on the normal axis of f, and on the supporting
axis of its two black edges (see [4] for details).



def getBitIndex(x,y,z, face_adj=False):
rx, ry, rz = x42, yh2, zh2
if face_adj: return rx + 2*ry + 3xrz + (rx*ry*rz)
else: return rx + 2*ry + 3*rz

Figure 3: Python code of the function returning the bit index for a cell (x,y, z), which may be a cube, an edge
or a vertex. The returned value is an integer from 0 to 7. The value of face_adj is only relevant if (z,y, 2)
denotes a vertex, i.e., if all three coordinates are odd. True means 6-adjacency, False means 26-adjacency. The
operator % denotes the remainder of integer division.

def getCellColor(x,y,z, adj=0):
indl = getMainIndex(x,y,z)
if not indl in colorMatrix.keys(): return O # default is white
ind2 = getBitIndex(x,y,z, adj==6)
return getBitFrom(ind2, colorMatrix[ind1])

def setCellColor(value, x,y,z, adj=0):
indl = getMainIndex(x,y,z)
if not indl in colorMatrix.keys():
if value==0: return O
else: colorMatrix[ind1] = 0x0
ind2 = getBitIndex(x,y,z, adj==6)
colorMatrix[ind1l] = setBitInto(value, ind2, colorMatrix[ind1])
return value

Figure 4: Python functions getCellColor to return and setCellColor to set the color of a cell (z,y,2),
which can be a cube, an edge, or a vertex. The color is 1 for black and 0 for white. Parameter adj
is relevant only if (z,y,z) is a vertex, as a vertex may have a different color with 6-adjacency (adj==6)
or 26-adjacency (any other value). Variable colorMatrix is a dictionary associating triplets with bytes.
The function call getMainIndex(x,y,z) returns the dictionary key for cell (z,y,z). The function call
getBitFrom(triplet,byte) returns the bit of the given triplet within the given byte. The function call
setBitInto(value,triplet,byte) sets to value the bit of given triplet within the given byte, and returns the
modified byte.



Figure 5: A vertex v and its incident edges e1, e in negative and positive axis directions, respectively (here for
the z-axis).

Our integrated algorithm factorizes the configurations checked by both algorithms. The first stage considers
a vertex v and, in turn, the three Cartesian directions. We describe the procedure for the z-parallel direction.
Let e; and ey be the edges incident with v in negative and positive direction with respect to v (as in Figure 5).
Based on the configuration at eq, ea, we change the color of v, e; to black according to the following rules:

1. If ey is incident with four white cubes, we skip.

2. If e; is incident with four black cubes, then e; becomes black and v becomes black (with both 26- and
6-adjacency).

3. If e; is incident with three black cubes, then e; becomes black.

4. If eq is critical (for Rule 1, here e; cannot have four incident white cubes), then v becomes black with
26-adjacency (eq will become black when processing its second endpoint).

5. If e; is critical, then e; becomes black, and v becomes black with 26-adjacency.

6. If e; and ey are both critical with the same configuration, then two more edges ez and e; become black,
as specified in [4].

7. If v is critical, then v becomes black with 26-adjacency. This last condition is only checked for eq,es
parallel to the z-axis (otherwise we would check it three times).

The main algorithm iterates the above described procedure three times, once for each axis, for all vertices
(x,y,2) within or on the boundary of the bounding box of the image. Then, it iterates once on the cubes
b = (z,y,2), and, only if the cube b is black, executes the second stage of [4] for the three faces of b in the
positive axis directions, i.e., the faces (z + 1,4, 2), (x,y + 1, 2), (z,y, z + 1).

5 Applications

Thanks to the unified data structure, many image processing tasks, which need to consider a 3D image with
one of 26-, 18- or 6-adjacency, can be performed in a simple and transparent manner. It is enough to specify
the desired adjacency type as a parameter. In this section, we present some examples.

The first example is the extraction of the connected components. In a general cubic image, this operation
will give a different result, depending on the considered adjacency type. After the three repaired images have



Figure 6: A raw cubic discretization of an octopus, with many critical edges and vertices, and the connected
component containing the cube pointed at by the arrow (which has a critical edge and a critical vertex) on the
cubic image (upper row) and on its repaired version (lower row), with 6-, 26- and 18-adjacency, from left to
right.

been computed (see Section 4) and stored in our unified data structure (see Section 3), it is sufficient to choose
which one we want to deal with. Figure 7 shows the Python function for this task. The different treatment of
the three cases is hidden inside functions adjacents and getCellColor. Given a BBC voxel (a FCC voxel) e,
adjacents(e) provides a list of BCC voxels (FCC voxels) if the adjacency type is 6 or 26 (18). Remember that
a tuple representing a cube also represents a FCC and a BCC voxel. Function getCellColor returns the black
or white color (1 or 0) of a cell, also depending on the adjacency type if the cell is a vertex.

A second example is extracting the boundary surface of a 3D image. In a well composed image, this is a
2-manifold surface consisting of one or more closed surfaces. The Python function shown in Figure 8 collects all
polygonal faces composing the boundary. Again, this is done in a transparent way with respect to the adjacency
type.

Because the image is well-composed, the boundary surface can also be used to compute the Euler char-
acteristic of the repaired image in the BCC or FCC grid (i.e., that of the original image in the cubic grid,
with the corresponding adjacency type). In fact, given a 3-manifold object O, its boundary surface 0O is a
2-manifold, and the Euler characteristics x of the two sets are related by property 2x(0O) = x(90). The Euler
characteristic of a polygonal surface can be computed as x(90) = ng — ny + ng, where ng, ni, ny denote the
number of vertices, edges, and polygonal faces, respectively. A common representation of a polygonal surface
is the so-called indexed representation, storing an array of vertices (without duplicates), and each face as a list
of indexes within the vertex array. Numbers ng and ny are stored, and n, is easily retrieved by exploiting the
fact that, as the surface is a 2-manifold without boundary, an edge is shared by exactly two faces. Therefore
ny = %Zf len(f), where len(f) denotes the number of edges of a face f.

Another example is the computation of digital distances in an image. Digital distances are used, for example,
for computing the medial axis. Given a black cube b, the Euclidean distance of b from the white background is
digitally approximated by taking the minimum length of a path of adjacent black cubes connecting b to a white
cube. Of course, the digital distance depends on the considered adjacency type. Again, this can be done with
our unified data structure in a transparent way. Many other image processing operations [11, 15, 16, 19, 22]
might benefit from our unified data structure.



def connectedComponents(cube_list, adj_type):
components = dict() # empty dictionary
comp_list = [] # empty list
ind = -1 # index of last found connected component
for b in cube_list:
if not b in components.keys():
# Start a new connected component from b:
ind += 1
comp_mark[b] = ind
comp_list.append([b]) #init comp_list[ind] as [b]
# Depth first search to find all cells in the connected component:
stack = [b]
while len(stack)>0:
e = stack.pop()
for d in adjacents(e, adj_type):
if getCellColor(d, adj_type)==1 and not d in comp_mark.keys():
comp_mark[d] = ind
stack.append(d)
if isCube(d): comp_list[ind].append(d)
return (ind+1, comp_list, comp_mark)

Figure 7: Python code of the function finding the connected components. cube_list is a list of black cubes,
adj_type is 6, 18 or 26. Dictionary comp_marks will mark each black cell with the index of the connected compo-
nent containing it. comp_list is a list of lists of cubes, each list comp_1ist[i] will contain the cubes belonging
to the i-th connected component. In addition, the function returns the number of connected components. The
process applies a standard depth first search using a stack, here a Python list with operations append and pop.

def findBoundary(cell_list, adj_type):
boundary = Surface()
for ¢ in cell_list:
for d in adjacents(c, adj_type):
# If the adjacent voxel is white, the common face is on the boundary
if getCellColor(d, adj_type)==0:
boundary.addFace (commonPolygon(c,d))
return boundary

Figure 8: Python code of the function finding the boundary surface of the repaired image according to a given
adjacency type. cell_list is a list of black cells, adj_type is 6, 18 or 26.



6 Concluding remarks

We have proposed a new compact data structure which allows storing, at the same time, a cubic image and
its repaired versions according to vertex-, face- and edge- adjacency. The specific contribution of this work
is in the possibility of writing image processing algorithms in a uniform way, without the need for a different
treatment of critical configurations in the three adjacency types. With almost no extra space, this simplifies the
implementation of algorithms, and can be especially useful at a prototype level, when execution time is not yet
an issue. Among possible application fields, we mention the design of new mathematical definitions and tools,
and teaching. In the first case, it will be possible to get preliminary results and select the best adjacency type
for a more efficient implementation. In teaching, students will be able to write code comparing the impact of
the adjacency type on the known image processing operations.
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