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Fig. 1. We compute Boolean operations between shapes bounded by closed curves on surfaces, consisting of geodesic polygons and Bézier splines. We support,
intricate and self-intersecting shapes on surfaces of any genus and optionally open boundaries (left and center). As an alternative to Booleans, we also define
Boundary Sampled Curves, which extend the work of Du et al. [2021] to the manifold domain (right).

We port Boolean set operations between 2D shapes to surfaces of any genus,
with any number of open boundaries. We combine shapes bounded by sets of
freely intersecting loops, consisting of geodesic lines and cubic Bézier splines
lying on a surface. We compute the arrangement of shapes directly on the
surface and assign integer labels to the cells of such arrangement. Differently
from the Euclidean case, some arrangements on a manifold may be incon-
sistent. We detect inconsistent arrangements and help the user to resolve
them. Also, we extend to the manifold setting recent work on Boundary-
Sampled Halfspaces, thus supporting operations more general than standard
Booleans, which are well defined on inconsistent arrangements, too. Our
implementation discretizes the input shapes into polylines at an arbitrary
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resolution, independent of the level of resolution of the underlying mesh.
We resolve the arrangement inside each triangle of the mesh independently
and combine the results to reconstruct both the boundaries and the interior
of each cell in the arrangement. We reconstruct the control points of curves
bounding cells, in order to free the result from discretization and provide
an output in vector format. We support interactive usage, editing shapes
consisting up to 100k line segments on meshes of up to 1M triangles.

CCS Concepts: « Computing methodologies — Graphics systems and
interfaces; Shape modeling.
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1 INTRODUCTION

Vector graphics plays a key role in 2D design. Standard editors pro-
vide tools for drawing polygons and splines. Sets of closed curves de-
fine solid shapes, which may be combined by Boolean set operations,
as done, e.g., in the PATHFINDER tools in Adobe Illustrator [Adobe
2021]. Recent research has shown the possibility of editing vector
graphics directly on surfaces, by tracing geodesic polygons and
splines robustly and interactively on triangle meshes [Mancinelli
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et al. 2022; Mancinelli and Puppo 2022; Nazzaro et al. 2021; Sharp
and Crane 2020]. To the best of our knowledge, though, Boolean
operations between shapes defined by curves on surfaces have not
been demonstrated yet.

Boolean Operations on Surfaces. Boolean operations require re-
solving the arrangement of the shape boundaries, and discriminating
the inside and outside regions with respect to them. In this work, we
follow an approach similar to Zhou et al. [2016], labeling the cells
in the arrangement with tuples of integers that express their inside-
ness with respect to the shapes. Compared to the Euclidean setting,
tackling this problem on a manifold involves two fundamental chal-
lenges: (I) an arbitrary arrangement containing non-contractible
curves may yield an inconsistent labeling, and (II) the computations
necessary to intersecting curves and discriminating the inside/out-
side of regions are significantly more involved.

BoolSurf. We propose BoolSurf;, a fast and sound method for com-
puting Boolean operations between shapes bounded by freely in-
tersecting curves on surfaces of any genus, possibly with open
boundaries. Some results from our work are shown in Fig. 1.

We address issue (I) above by providing necessary and sufficient
conditions for an arrangement to be consistent. We automatically
detect consistent arrangements of curves and provide a labeling of
their cells. In the case of an inconsistent arrangement, we provide
automatic tools to fix it, guided by user choices. Alternatively, we
also support Boundary Sampled Curves (BSC), a manifold extension
of the work presented by Du et al. [2021], which does not require
cell labeling and works on inconsistent arrangements, too.

We address issue (II) by resolving the problem in a discrete setting.
We represent a surface with a mesh of triangles, tessellating curves
as polylines over such mesh, and we design efficient algorithms to
support interactive usage on large meshes. We recover the control
points of the curves in output, freeing them from the discretization.
In this way, we both encode the result in vector format, and achieve
a smooth appearance by adjusting the level of resolution.

Validation. In this work, we focus on performance and rely on
standard floating point arithmetic, striving to exploit its expressive-
ness at its best, and taking advantage of topological constraints
whenever possible. This approach proved to work well in all our ex-
periments. The integration of robust methods, which is orthogonal
to this work, is out of our scope and left as future work.

We tested our method on a variety of conditions, by changing the
mesh complexity, as well as the number, resolution and distribution
of curves on the surface. Our arrangements form intricate decora-
tions, involving up to hundreds of shapes, defined with thousands of
control points and discretized to polylines consisting of up to 100k
vertices over meshes consisting of up to 1M triangles. We further
validated our algorithm on shapes placed randomly on a collection
of objects from the Thingi10k meshes [Zhou and Jacobson 2016]. In
all cases, our method works reliably and efficiently enough to be
executed interactively, as also shown in the supplemental video.

2 RELATED WORK

Boolean operations. Being a fundamental building block in geo-
metric modeling, Boolean operations have been investigated for
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Fig. 2. Examples of shapes together with their patch and cell graphs and
related cell labeling: all three arrangements consist of three regions, but
have different configurations. Left: a self-overlapping shape winding about
the hole. Center: a shape defined with a self-intersecting curve. Right: a
shape defined with two simple curves.

longtime. The basics for Booleans in 2D were introduced by Knuth
[1986] in Metafont, including the treatment of self-intersecting
shapes. The Clipper package [Johnson 2014] provides a robust and
efficient implementation of the algorithm for polygon clipping by
Vatti [1992], by using integer arithmetic.

Most recent contributions address robust solutions for polyhedral
shapes in Euclidean space. CGAL’s exact-arithmetic implementa-
tion sets a standard in robustness for arrangements in 2D [Wein
et al. 2021] and in 3D [Granados et al. 2003]. Several recent works
base their computation on this approach, achieving results that are
provably correct [Hu et al. 2019, 2018; Zhou et al. 2016]. Some ap-
proaches combine exact arithmetic with Binary Space Partitions
(BSP) to improve efficiency [Bernstein and Fussell 2009; Campen
and Kobbelt 2010; Naylor et al. 1990]. Other approaches improve ef-
ficiency by using predicates, as proposed by Attene [2020], Fortune
and Wyk [1993] and Levy [2016], which recur to exact arithmetic
only when strictly necessary [Cherchi et al. 2020; Wang et al. 2021].

Winding number. Several recent approaches to Boolean operators
use winding numbers of boundaries to define the inside and outside
of shapes in an arrangement [Barill et al. 2018; Jacobson et al. 2013;
Zhou et al. 2016]. The theory of winding numbers for curves in the
plane is a classical subject, for which Griinbaum and Shephard [1990]
provides a comprehensive account. Among the several equivalent
ways of assigning labels to regions with respect to a closed curve,
we follow the same approach of [Zhou et al. 2016]. We assume
that boundaries are consistently oriented, and we count the signed
number of intersections with the oriented boundaries while visiting
the arrangement across adjacent regions.

The theory in the Euclidean case cannot be extended to the man-
ifold setting in a straightforward way, though. Reinhart [1960] in-
troduces the winding numbers for curves on manifold surfaces, and
Mcintyre and Cairns [1993] provides a geometric method for com-
puting them. Both such works show that winding numbers in this
setting are defined only for a chosen set of smooth generators of
the first homology group of the surface. We elaborate on results
by Mcintyre and Cairns [1993] to provide necessary and sufficient
conditions for the decidability of an arrangement of curves.
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Fig. 3. Left: Labeling of a shape defined with a single self-intersecting curve.
Center: inside with the even-odd rule. Right: inside with the non-zero rule.

3 BOOLEAN OPERATIONS ON SURFACES

We begin with some basic definitions, followed by an overview of
our algorithm, including our main result about non-trivial shapes.
Implementation details are deferred to Sec. 4

3.1 Shapes through Cell Labeling

Shapes on surfaces. Let S be an orientable surface, possibly with
open boundaries. A shape A on S is defined with a set of closed
oriented curves yi, . .., y, which may mutually and self intersect,
as shown Fig. 2. We use multiple curves per shape to naturally
represent holes, such as the glyph for the letter ‘a’, assuming that
they are oriented consistently. We split curves at all intersection
points. A patch is a portion of a given curve between two consecu-
tive intersection points, which inherits the orientation of the curve
defining it. The set of patches forms a planar graph, partitioning S
into connected cells.

Cell Graph. By construction, cells form a complete partition of
S. Two cells are mutually adjacent if they share a common patch
at their boundaries. The cell graph, which is dual to the graph of
patches defined above, has one node per cell and one arc per pair
of adjacent cells. We orient each arc in the cell graph to cross its
corresponding patch from the right to the left; and we label it with
the shape containing the patch it crosses. See Fig. 2.

Cell Labeling. In the Euclidean setting, it is always possible to
label each cell of the cell graph in a unique way with an integer
number, such that the outer unbounded cell is labeled zero, and
the label increases by one when crossing a patch from the right
to the left [Zhou et al. 2016]. The label of a cell counts how many
times the curves wind about it, with a positive/negative sign for the
cycles in counterclockwise/clockwise orientation, respectively. This
mechanism extends directly to arrangements of contractible curves
on a surface, provided that one arbitrary cell is selected to be the
outer cell and labeled with zero. This case is shown in Fig. 2.

Given a labeling, the inside and outside of shape A is defined
with either the even-odd rule, where only the parity of the label is
considered and even is identified with the outside, or the non-zero
rule, where only cells with a zero label are classified outside. See
Fig. 3 for an example.

Inconsistent Labelings. On a surface of genus non-zero, not all
arrangements of curves define a valid shape. For example, a shape
defined with a single non-contractible curve, as in Fig. 4(left), has
the same region on both sides, and the corresponding cell graph
consists of a single cell and a single self-loop crossing the curve. We

Fig. 4. Left: a curve y defines an inconsistent shape. Right: curves v; and
1, are generators of the homology; the shape defined with y, v, » has a
consistent labeling, while no subset of such curves has a consistent labeling.

say that the labeling of such a shape is inconsistent. Note that, the
shape can be turned into a consistent configuration by adding more
non-contractible curves, as in Fig. 4(right). However, such curves
must be selected in a suitable way, which we will clarify later on.
We will present first the algorithm for the consistent case and next
the method to resolve inconsistent shapes guided by user input.

3.2 Algorithm Overview

A collection {A;1, ..., A} of shapes on S forms an arrangement, as
shown in Fig. 5 (A). The patch and cell graphs naturally extend to
multiple shapes, as shown in Fig. 5 (B) and Fig. 5 (C), respectively.

The cells of the arrangement are the building blocks for comput-
ing Boolean operations. We relate each cell to each input shape, by
assigning labels that encode the insideness relationship between
the cell and each of the shapes. We follow the approach of Zhou
et al. [2016], labeling each cell with a k-tuple of integer values, such
that the i-th entry in the tuple characterizes the cell with respect to
shape A;, as shown in Fig. 5 (D).

Labeling algorithm. For the sake of clarity, we describe how to
obtain a labeling for a generic shape A;, noting that this can be done
for all shapes together in a single pass. Since in the manifold setting
there is no natural notion of “outer region”, we pick a cell ¢; in the
arrangement and we arbitrarily assign it a label zero with respect
to A;. See Sec. 4.3 for details about the choice of ¢;. Starting at c;,
we set the labels at all other cells by performing a single visit of the
cell graph and propagating the labels throughout the visit. During
the visit, if an arc is labeled with a cell different from A;, the label
is propagated unchanged through it. Otherwise, the label is either
incremented or decremented by one, depending on whether the arc
is traversed according to its orientation or in reverse orientation.

Inconsistency is easily detected during the visit since it manifests
as two paths assigning different labels to the same cell. In that
case, we activate the user-assisted procedure described in the next
subsection. We proceed with Boolean operations once all shapes
are consistent and all cells are correctly labeled.

Boolean operations. We apply a set of rules on the cell labeling
to select which cells to include in the result, as shown in Fig. 5 (E).
The definition of union, intersection, difference, and xor operations
through bit vectors is straightforward. We also support variadic
operations, i.e., operations that combine several shapes at once, as
defined in [Zhou et al. 2016]. Variadic queries are resolved in a single
pass, by performing a check on the tuple of labels of each cell. This
is more performant than trees of pairwise Booleans. Furthermore,
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Fig. 5. Steps of our algorithm. From the left: (A) The input is a set of oriented curves defining two shapes A and B. (B) The arrangement is built by intersecting
such curves, splitting them into patches, and finding the cells in which they tessellate the surface. (C) The cell graph is built that encodes the adjacency

between cells and is labeled with the shapes crossed with arcs. (D) The adjacency graph is visited to assign to each cell an integer code per input shape. (E)
Boolean operations consist of selecting cells based on their codes. In this example, the difference between A and B is computed.

variadic operations may be more expressive, too. Fig. 18 shows an
arrangement of multiple shapes, which are combined at once.

Boundary-Sampled Curves. Du et al. [2021] introduced Boundary-
Sampled Halfspaces (BSH) in the Euclidean setting, which allow
users to directly control how cells are combined into final results via
user-provided boundary samples, and can represent configurations
that cannot be expressed with Booleans operations. We extend this
framework to the manifold domain, with a method called Boundary-
Sampled Curves (BSC). In BSC, the user specifies a set of oriented
samples on patches of the arrangement, indicating a set of desired
boundary patches to the output shape, as well as the shape insid-
eness with respect to them. This approach bypasses the issue of
inconsistent labelings, since it allows users to directly control the
final result via boundary samples, denoted by bullets with arrows in
Fig. 6, which effectively disambiguate inconsistent configurations
in a user-friendly manner. More complex examples are shown in
Figures 1 and 19.

In order to apply BSC, all the first part of our pipeline is left
unchanged. Cell labeling is no longer necessary and BSC computes
the simplest shape, measured by boundary length, which fulfills the
constraints given by the samples. This operation is performed on the
cell graph with the iterative graph cut algorithm presented in [Du
et al. 2021]. The notable difference is that, in our manifold setting,
the cell graph may contain self-loops generated by non-contractible
curves. Since no cut in the graph can include a self-loop, the graph
cut algorithm is oblivious of curves that cause inconsistency. Thus,
our BSC algorithm inherits the same existence, uniqueness, and
describability properties of BSH.

3.3 Inconsistent Labeling

In this section, we set the theoretical results about shape consistency
and we provide a practical method to resolve inconsistent cases.
Whenever no ambiguity arises, we will refer indifferently to a shape
A, the set of curves yy, . . ., yp, defining it, and the set of cells in which
they partition S.

Homology. The first homology group H1S provides an algebraic
characterization of the topology of a surface S. We just give an
intuitive definition, referring to books in algebraic topology for a
rigorous treatment [Fulton 1995; Hatcher 2002]. Let g be the genus
of S. A set of non-contractible closed curves (v1,...,vzq) can be
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Fig. 6. Three results of applying BSC to a set of curves, controlled by different
user-selected samples, shown in arrowed bullets. BSC is an alternative to
Boolean operations that gives control over cell selection. The first two results
can also be obtained with Boolean operations, but require joining the red
and green curves with opposite orientations into the same shape; while the
third result cannot be obtained with Boolean operations.

found, whose combination defines all possible classes of closed
curves that can be traced on S. The v; are called the generators of
the homology and can be combined into chains through operator +.
Given a generic curve y on S, its homology class in H; S is

[yl =ni[n]+...+ nZg[VZg]

where [-] denotes the homology class of a curve and the n;’s are
integer numbers, which intuitively express how many times curve y
winds about v;. Note that the orientation of a curve with respect to
the generators is relevant to set the sign of its coefficients. Homology
applies to sets of curves, too, by just summing their coefficients.
A curve, or set of curves, is said to be null-homologic if all the n;
in its expression are zeros. Contractible curves are null-homologic,
but also combinations of non-contractible curves that disconnect S
may be null-homologic. For example, the combination of the three
curves in Fig. 4(right) is null-homologic, while each of them is not.

Consistency. The following result provides necessary and suffi-
cient conditions for a shape to be consistent.

THEOREM 1. Let A be a shapeon S, defined with curvesyi, ..., yp. A
has a consistent labeling if and only if [y1 +. . . +yp] is null-homologic.

The proof is provided in Appendix A. The following corollary is
straightforward from Theorem 1 and is stated without a proof.

COROLLARY 2. An inconsistent shape A can be turned into a consis-
tent shape A’ in one of the following ways (see Fig. 7):



(1) by adding 2?21 n; j copies of each generator v; (which has a
non-zero coefficient in the homology of [y1 + ...+ yp]) with a
reverse orientation (i.e., —v;);

(2) by duplicating, with a reverse orientation, all curves of A, whose
homology contains generators that have non-zero coefficients
in the homology of [y1 + ...+ ynl;

(3) by removing from A a set of curves whose combination has the
same homology of [y1 + ...+ ynl-

Resolution. Upon loading the input dataset, we pre-compute a set
of generators of the homology of S. Once an inconsistent shape A
is detected, we compute the homology of all the curves in A. Now
let (ny,j,...,nzg,7) be the tuple of integers encoding the homology

of yj and (Z?zl nij,...,
shape A. The non-zero coefficients in the latter give the “generators
in excess” in the homology of A.

In the GUI of our system, we show the inconsistent shape to the
user, by highlighting all the curves in it that contain generators in
excess. By hovering each such curve, we show its corresponding
generators in excess, with their orientation and multiplicity. The
user can then choose how to resolve each curve. The homology of A
is re-computed on the fly after each modification, and the operation
is repeated until A becomes consistent.

We provide three automated methods to resolve a shape, which
follow from Corollary 2 and are illustrated in Fig. 7 and Fig. 8: (1) add
copies of the generators in excess to A, with opposite orientation,
as they appear in the homology basis, adding a geometric offset in
case of multiple copies; (2) duplicate curve y; in reverse orientation
with an offset in the direction normal to its control points, to obtain
a solid strip; and (3) remove y; from A, or flip its orientation, which
is equivalent to remove it twice, in terms of homology. While any
combination of these methods can be used on the different curves
of A, we also allow the user to alternatively apply manual editing,
e.g., adding more curves and/or changing the shape and homology
of some curves defining A, or even combining A with some other
inconsistent shape in the arrangement to form a single shape. All
our curves are editable, thus if some added curve does not have
the desired geometric appearance, it can be edited by dragging its
control points across the surface, without altering the homology.

Z;’zl nag.j) be the corresponding tuple for

3.4 Open boundaries

Our method works seamlessly for a surface S with open boundaries.

Let S be a watertight surface where all holes have been plugged
with discs at the boundaries of S, and let Ag be a shape on S defined
by the boundary curves of S. Shape Ay is consistent by construction
and the curves are oriented so that the inside of Ag is S. Resolving
a Boolean operation on S for shapes Ay,. .., Ag is equivalent to
resolve the same operation on S for shapes Ay, ..., Ag, where the
bit for Ay is set to 1. Note that both S and Ay are virtual and this
does not require any change in the implementation.

3.5 Discretization

Input shapes. We represent the surface with a triangle mesh M.

Our input curves are either geodesic polygons, defined with their
vertices on M, or geodesic Bézier splines, defined with their control
polygons directly on M, as in [Mancinelli et al. 2022]. Fig. 9 shows
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Fig.7. Aninconsistent shape defined with two curves, shown in red, together
with the generators of the homology, shown in yellow. Decidability may be
resolved in three different ways, with different results: by adding generators
of the non-contractible curve; by duplicating the non-contractible curve; or
by removing the non-contractible curve.

an example with splines. We discretize such curves with polylines,
which may be arbitrarily refined in the interior of triangles. The
discretization of input curves is independent from the discretization
of the surface, as shown Figures 10 and 11. See Sec. 4.1 for details.

Computing the arrangement. We first determine which triangles
may contain an intersection, and then compute the intersections
between line segments in each triangle. See Sec. 4.2 for details. The
curve patches form the boundaries of the cells in the arrangement.
We determine both the cell interiors and the cell graph, by a flood-fill
over the surface. We perform all such operations in a non-destructive
way, on a dual graph that represents a refinement of M embedding
the input shapes. See Sec. 4.3 for details.

Extracting the output. The Boolean operations are performed on
the cell graph, which is independent from the underlying discretiza-
tion. The output consists of grouped sets of cells, which are bounded
by chains of curve patches. Since the input polylines were obtained
by discretizing geodesic lines and splines, we recover the control
points of the resulting boundaries, as shown in Fig. 9, freeing them
from the discretization. All control points are encoded with barycen-
tric coordinates with respect to the triangles of the ambient mesh
M, thus in a inherently robust manner.

4 IMPLEMENTATION

We aim at providing a practical algorithm that scales well with mesh
complexity and is fast enough for interactive use. In this section,
we present the details of the algorithm and its implementation. The
description is split into the steps discussed in the previous sections.

4.1 Data Representation

Mesh Representation. We encode a mesh M with an indexed data
structure, consisting of an array of positions for vertices and an
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Fig. 8. A more complex example of inconsistent shape defined with four curves (A), the generators of homotopy (B), and a sequence of edits (C) needed to
produce a consistent shape (D). The edit sequence shows the steps as implemented in out prototype. Upon detecting an invalid shape we display it to the user
together with the generators in excess (C1); the user can then select any set of curves, for which we display the generators in excess (C2); the user resolves
one curve by removing it from the shape, after which we recompute and display the generators in excess for the updated shape (C3); the user proceeds by
selecting a new curve (C4) and duplicating it (C5); in the final edit, two curves are selected (C6) and two generators are added (C7) to fully resolve the shape.

Fig. 9. Left: Two shapes defined with Bézier splines are given as input.

Center: Union of the shapes. Right: Symmetric difference of the shapes. Our
algorithm splits the splines at intersection points and outputs the control
points that define the boundary curves resulting from Boolean operations.

Fig. 10. The same shapes are drawn onto low-poly and a high-poly version

of the same surface. The discretization of curves is the same in both cases.

Overall, the input curves will cross triangles of the low-poly version with
more complex configurations.

array of indices for triangles. While we focus on interactivity on
meshes with millions of triangles, we also support low-resolution
meshes, as shown in Fig. 10.

The Dual Graph of Adjacencies (DGA) of the mesh is an undirected
graph whose nodes correspond to the mesh triangles, and whose
arcs correspond to triangle adjacencies. The DGA is used to visit the
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surface and find the cells in the arrangement, but it cannot represent
the cells as it is. To this aim, the DGA is refined during the first stage
of the algorithm, expanding every node crossed by input curves into
a suitable subgraph, as discussed in Sec. 4.3. We compute the DGA
of the input mesh M once in the beginning. Upon editing, we only
pay the cost of its refinement, while its original state is restored by
just discarding additional entries in the data structure.

Curve Representation. We discretize the input curves over M as
polylines using the method of Mancinelli et al. [2022]. This method
is inherently robust, guaranteeing that a discretized curve traverses
a strip of triangles on M. A polyline has a vertex each time it crosses
a mesh edge, and possibly other vertices inside triangles, depending
on its level of discretization, as shown in Fig. 11. Each curve vertex
is represented with a tuple consisting of the index of a triangle ¢ of
M containing it, together with its barycentric coordinates in ¢.

All subsequent computations are done in barycentric coordinates
in 2D and all our results are encoded in the same way. The advantage
of this approach is threefold. First, all computations and results
refer to the intrinsic geometry of the ambient surface, not to its
embedding in 3D. Second, we avoid as much as possible conversions
of coordinates between 2D and 3D, thus reducing the sources of
error. Third, we exploit floating point arithmetic at its best, by
constraining all our computations to the interval [0, 1].

4.2 Intersecting Curves

The first step of our algorithm consists of splitting the input curves
at their intersections, as shown in Fig. 11. We first locate the trian-
gles in which intersections may occur, then we bound geometric
computations inside single 2D triangles.

Curve Hashmap. We build a hashmap whose keys are the triangle
indices and whose values are the curve segments contained in a tri-
angle, as shown in Fig. 11. Vertices lying on mesh edges are encoded
with respect to both incident triangles, and possible intersections
occurring at them are de-duplicated in post-processing. Hashmaps
are efficient, since they are built with amortized complexity of O(n)



Fig. 11. Hashmap representation of the input shapes. Left: The triangles
crossed by at least a shape are colored in light grey. The id’s of such triangles
provide the keys of a hashmap. Each entry in the hashmap will contain a
2D representation of the portion of arrangement that covers that triangle.
Middle: The local 2D polylines are expressed in barycentric coordinates.
The highlighted triangle contains two polylines belonging to two different
input shapes. Right: The intersections between the shapes are computed
per triangle, by testing pairs of 2D segments in barycentric space.

Fig. 12. Refinement of the Dual Graph of Adjacencies inside a triangle. Left:
The set of input polylines that cross the triangle and their intersections,
expressed in barycentric coordinates. Middle: a Constrained Delaunay Tri-
angulation is computed to embed the polylines as triangle edges. Right: The
corresponding graphlet of the DGA.

in the number of curve segments, and the data structure is sparse
with respect to the number of triangles in the mesh.

Curve Intersections. We find intersections between curves seg-
ments by iterating over the triangles in the hashmap. For each
triangle, we find intersections, including self-intersections, by test-
ing pairs of curve segments that cross it. Intersections are computed
in 2D with barycentric coordinates, which correspond to Cartesian
coordinates in the standard simplex, (0,0)(1, 0)(0, 1), while guaran-
teeing topological consistency upon affine deformations. We split
the curves at each intersection point by performing a point insertion
operation, and update the hashmap accordingly.

4.3 Cells and the Cell Graph

Cells in our arrangements are regions of surface bounded by chains
of curve patches. For the purpose of Boolean operations, we just
need to relate regions to their boundary patches. On the other hand,
the region corresponding to each cell in output may be relevant for
subsequent operations (e.g., coloring). Since the input curves cross
triangles, such regions cannot be represented as sets of triangles
of M. We thus refine the Dual Graph of Adjacencies of M to both
represent the interior of cells explicitly, and build the cell graph.

DGA Refinement. Fig. 12 shows the refinement of a node corre-
sponding to a triangle in the DGA. Each node ¢, which is crossed by
input curves, is substituted with a subgraph, which corresponds to a
triangulation of ¢ that embeds the curves crossing it. In this refined
DGA, cells consist of subsets of nodes, and partitioning the mesh
into cells is equivalent to partitioning the graph into sub-graphs.

BoolSurf: Boolean Operations on Surfaces « 247:7

We compute a 2D Constrained Delaunay Triangulation (CDT) of ¢
with an off-the-shelf robust software [Amirkhanov 2022]. We use
the resulting meshlet to define the sub-graph that substitutes t. Note
that the original mesh M is unchanged, while we only add nodes to
the temporary DGA. We do keep the 2D meshlets, in the hashmap,
since they are useful for rendering the final shapes.

Computing the CDT is the slowest part of our algorithm, which
we speed up by (1) fetching from the hashmap just the triangles that
need refinement, (2) parallelizing the execution over all of them,
and (3) skipping the CDT step when a triangle is crossed by just a
single segment, which happens most of the times on hi-res meshes.

As shown in Fig. 12, processing a single triangle leaves some
dangling arcs in the corresponding subgraph of the DGA. Each
dangling arc has a mate in the refinement of the adjacent triangle.
Dangling arcs are paired after all entries of the hashmap have been
processed, exploiting the adjacency between triangles of M.

For later usage, we tag each arc of the DGA, which crosses a
curve patch, with the id of the corresponding shape. For the sake
of clarity, we call tagged arcs end tagged nodes those arcs that cross
curve segments and their adjacent nodes, respectively.

DGA Partition. After refinement, each node in the DGA belongs to
exactly one cell, and each cell corresponds to a maximally connected
subgraph that contains just non-tagged arcs. We perform a visit of
the DGA, with a flood-fill algorithm that visits each node just once.
Starting at any node of the DGA, we initialize one new cell and we
perform the visit in breadth-first order, by expanding it only across
non-tagged arcs. Meanwhile, we collect all arcs that connect the
boundary of the cell to the rest of the graph. We restart the visit of
a new cell from any other node, which does not belong to a visited
cell and can be reached by crossing its boundary. We proceed in this
way until all nodes have been visited. See Fig. 13.

Extracting the Cell Graph. While visiting the DGA for partition,
we also build the cell graph, as described in Sec. 3.2. See Fig. 13.
Once a new cell has been flooded, the corresponding node in the
cell graph is created, and this cell is connected with arcs to all the
already existing cells that are reached by crossing its borders. We
label each arc in the cell graph with the id of the shape crossed to
reach the neighboring cell, and set its orientation so that it crosses
the shape boundary from the right to the left.

Cell labeling. We compute all labels with a visit of the cell graph
and store them as a tuple of labels for each cell. In the remainder of
this section, we describe how we do the labeling for a single shape,
noting that it can be done for all shapes together, by just addressing
the proper entries in the tuple. Inconsistent shapes are also detected
during this process, while they will be resolved in a later stage.

We visit the cell graph in a breadth-first manner, as shown in
Fig. 14. At the beginning of the process, each cell is labeled with a
“null” value. In the absence of an ambient cell, which is guaranteed
to be outside all shapes, the visit starts from an arbitrary cell, which
receives a zero label. Such initial cell can be either user selected, or
chosen randomly. Given a cell a with a known label, the label of its
neighboring cell b is computed as I(b) = [(a) + 1, or [(b) = I(a) — 1
depending on whether the arc that connects a to b is traversed
according to its orientation, or in reverse orientation, respectively.
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Fig. 13. The surface is visited by flooding the Dual Graph of Adjacencies, starting at a random node/triangle. Cells are filled one at a time by visiting the DGA.
The cells graph is also built during the visit when the border of an already visited cell is reached.
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Fig. 14. Visit of the cell graph to compute labels: visit starts at cell b, which is set to zero with respect to both shapes; the label is propagated to cells ¢, d, a
adjacent to b, and such cells are enqueued for further propagation; cell ¢ is popped from the queue and the label is propagated to cell e; cell d is popped from
the queue and the label is propagated to cell f; the remaining cells in the queue do not effect propagation (not shown); after completion, the labels for shape A

are updated with the heuristics described in the text.

Fig. 15. Setting the “outer” region for a shape may be not intuitive. Examples
of labeling a self-loop, colored with self-union and the even-odd rule. Left-
Center: the result depends on the choice of the cell set to zero; in this case,
with a to the left and b at the center, the heuristics computes the labeling
at the center. Center-Right: the two configurations come from a homotopic
deformation of the same curve and have the same labeling.

If the connecting edge is associated to a different shape, the label is
unchanged, i.e. [(b) = I(a).

When the zero cell has been chosen randomly, we finally update
the labels as follows: we find the cell with the smallest value and
set it to zero, and we update all other labels consistently by an
arithmetic shift. Although this produces a valid result in most cases,
sometimes the zero cell needs to be user-selected. Fig. 15 shows
typical examples that may need manual disambiguation.

Inconsistent labelings are easily detected during propagation.
When a node receives a label, we check that the already-visited
neighbors are labeled consistently. If an inconsistency is found, then
the corresponding shape is declared inconsistent.

4.4 Resolving inconsistent shapes

Computing the homology. Upon loading the input mesh M, we
compute a set of generators vy,.. ., vz for its homotopy and ho-
mology. The generators are found by the method of Erickson and
Whittlesey [2005], using an off-the-shelf implementation. All gener-
ators pass through a common point xg, which is selected manually.
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Fig. 16. Left: A set of generators for the homotopy and homology that
all pass through a common point xj is used in our computations. Right:
an equivalent set for the homology, consisting of shortest geodesic loops
represented with splines, is used for the GUL.

The location of xq affects the geometry of the generators, hence
their appearance, but it is irrelevant to the subsequent algorithms.
We also extract a better looking set for the homology, by relaxing the
generators from passing through xo and shrinking them to shortest
geodesic loops with the method by Xin et al. [2012]. The two sets
are depicted in Fig. 16 for a double torus and they are equivalent:
we use the first one for algorithmic purposes and the second for the
GUL. Since the loops in the second set are geodesics, we turn each
of them into a Bézier spline, whose control polygon is obtained by
sampling regularly a set of points along it. This provides suitable
curves for interactive editing.

Given an inconsistent shape A, for each curve y; defining it, we
compute the homology of y; by the method of Dey and Schipper
[1995]. In short, we first map the generators to the polygonal schema,
which is a regular polygon with 4g edges: each generator is mapped
to two edges of the polygon, with opposite orientations, in an order
consistent with the radial order in which generators appear about
xo (see Fig. 17). Next, we collect all intersections of y; with the
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Fig. 17. The homology of a curve y is computed by intersecting it with
the generators 1, . . ., 1, and mapping it to the polygonal schema to the
right. The homology is obtained by collecting the labels of the edges of the
polygon subtended by the patches of curve and canceling equal symbols
with opposite orientation [Dey and Schipper 1995].

generators, then we map the patches of y; between consecutive
intersections to the polygonal schema. Finally, we collect the labels
of the corresponding edges of the polygonal schema. The result is a
word of symbols corresponding to the v;’s, which is simplified by
deleting all symbols that occur with different signs, and by counting
the multiplicity of all remaining symbols. This provides the col-
lection ny j, ..., nzg,j of integers encoding the homology of y;. See
[Dey and Schipper 1995] for further details.

Curve Offset. The automated resolution operations described be-
fore depend on either offsetting curves or deleting them. The latter
is trivial, while the former requires parallel transport. All our curves
are either geodesic polygons, or splines, hence each curve is defined
by a small set of control points. Mancinelli et al. [2022] provide the
basic tools to translate control points and parallel transport control
tangents of curves over the surface. Leveraging such tools, we offset
each vertex of a polygon, and each anchor point of a spline for a
fixed distance in the normal direction of the curve in tangent space;
handle points, which control the tangents of splines, are computed
by casting geodesic lines from the anchor points in the direction of
the parallel transported tangents.

4.5 Boolean Operations

A Boolean operation is expressed with a bit vector encoding the
desired inside/outside relation with respect to the various shapes in
the arrangement. Once the labels have been assigned, we compute
Boolean operations by selecting a subset of the cells, according to
their labels. The output of our algorithm consists of the boundaries
of the selected regions, represented as curves.

Recovering control points. We process the output boundaries to
recover the control points that define the new curves, which are
sub-curves of those ones in the input, thus freeing the output from
discretization. This is actually done right after computing the inter-
sections, as shown in Fig. 9. For geodesic polygons, each segment
is encoded just by its endpoints, which correspond to intersections
of the arrangements, and vertices from the corresponding polygon
in input. For geodesic splines, curves are split at all intersection
points, by computing the control polygons of the split segments
with the point insertion algorithm described in [Mancinelli et al.
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2022]. In this way, each Bézier curve is substituted in the refined
arrangement with a spline interpolating all intersection points.

Note that the output can now be encoded just as a collection of
control points, in the style of vector graphics, which refer to the
intrinsic structure of M by means of barycentric coordinates. This
description is independent of both the discretization used during
computation, and the embedding of M in 3D space.

The boundaries of the output regions can be reproduced later
on by generating the corresponding curves at the desired level of
resolution. Note also that the result can be directly transferred to an
arbitrarily refined representation of the ambient surface, obtained
through subdivision, because barycentric coordinates are easily
propagated to the subdivided mesh.

4.6 Boundary-Sampled Curves

Similar to [Du et al. 2021], the input to our BSC algorithm is an
oriented cell graph and a set of user-provided boundary samples.
Each edge of the cell graph is oriented consistently with respect to
the input shape, and its weight is the length of the corresponding
patches, which can be easily computed in our pipeline. Given the set
of samples provided by the user, we employ the BSH iterative graph
cut algorithm to compute the collection of cells that are considered
as inside. The output cells are compatible with the user samples, and
semantically describe a minimal region bounded by as many samples
as possible, while satisfying a set of constraints such as orientation-
preserving and sample-connectedness as described in [Du et al.
2021]. Note that BSC only involves combinatorial processing of the
cell graph, hence it is as cheap as computing Boolean operations.

The main distinctions with respect to BSH are that, in the mani-
fold domain, self-loops are present for non-contractible shapes, and
that we support different orientations for patches of the same shape.
iIn this sense, our method is a strict superset of the cases demon-
strated in prior work, which uses the same optimization method for
a different graph and input samples.

4.7 Rendering

Once converted to absolute 3D coordinates in the embedding space,
we can render the output shapes, both by stroking their boundaries
and by filling their interiors. We distinguish two cases, coloring
using GPU shaders and coloring in a path tracer.

Prior work has shown how to rasterize vector textures on GPUs
by building a data structure that encodes the per-triangle curve
boundary, which is used in the fragment shader to draw the inside
or outside of each shape [Nehab and Hoppe 2008; Ramanarayanan
et al. 2004]. These methods are hard to implement, though, they
require to build and update a GPU data structure interactively, and
are restricted in the complexity of the per-triangle curve segments.
We rather extract fine surface patches using the meshlets computed
during DGA refinement, and draw them with face colors. We use
this GPU implementation in the supplemental video.

In a CPU path tracer, we implemented a simpler method. When
evaluating material properties at an intersection point, we look up
the meshlet in the barycentric space of the intersected triangle. We
check the uv coordinates of the intersection point and perform 2D
point-in-triangle operations to find the intersected cell, assigning a
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Fig. 18. Boolsurf supports variadic Booleans, as defined in [Zhou et al.
2016], executing them in a single pass. Here, 112 shapes, which span a
whole surface of genus four, are combined with an all-vs-all Xor operation.

color accordingly. This method does not require extracting patches
and is based purely on the data we already use for the arrangement.
We used this method for all images in this paper.

5 RESULTS

We validated our work by computing a variety of cell arrangements
on many meshes representing surfaces with different characteristics
in terms of genus, boundaries, meshing, and roughness. We use
hand-drawn shapes as well as SVG icons consisting of geodesic
Bezier splines. The hand-drawn shapes are traced directly on the
surface with our prototype GUI For SVG icons, we first map the
control points to the surface via normal coordinates, and then trace
the geodesic splines directly on the surface. Once mapped, icons
become editable in the GUI just like the hand-drawn shapes. In both
cases, we used the method presented in [Mancinelli et al. 2022].

Experimental Setting. We tested our prototype on a variety of
meshes, both hand-modeled and 3D scanned, ranging in complexity
from a few thousands to one million triangles. We execute Boolean

operations on arrangements from a few up to a few hundreds shapes.

All curves are finely tessellated on the mesh, using typically a few
hundreds segments per curve. We chose the shapes in the examples
to span various conditions, which generate between a few to a few
hundreds cells in the arrangement, Fig. 1 shows detailed splines on
scanned meshes, Fig. 5 shows smooth icons drawn on a corrugated
mesh, Fig. 18 shows an arrangement of numerous shapes, and Fig. 20
show shapes with many control points. Figures 1, 6 and 19 shows
examples obtained with Boundary-Sampled Curves.

Execution Speed. Tab. 1 summarizes the statistics for all results in
this paper, corresponding to Figures 1, 5, 6, 10, 13, 18, 19, and 20.

On a 3.8 GHz desktop with 16 cores, execution times are in the
order of tens of milliseconds to perform all operations. The only
outlier took a couple of hundred milliseconds for hundreds of shapes
on a highly detailed mesh. This makes our method fast enough for

interactive use, as we also demonstrate in the accompanying video.

Execution time increases mostly with the complexity of the input
shape and not with the complexity of the mesh. This comes from
using the hashmap during the computation of the arrangement.
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Fig. 19. Examples of using Boundary-Sampled Curves to compute cell selec-
tions that are either not representable, or hard to specify with Boolean op-
erations. Left: The decoration on the head cannot be obtained with Boolean
operations, and the arrangement on the body is inconsistent because of
non-contractible loops. Right: While the flower decoration can be repre-
sented as a complex CSG tree, it is more easily achieved by placing two
samples per petal (some such samples are omitted in the figure for better
readability).

The breakup of times for each stage of the algorithm shows bot-
tlenecks in the refinement and partitioning of the Dual Graph of
Adjacency. For the refinement, execution time grows with the num-
ber of nodes that need refinement, and with the resolution of curve
tessellation. This stage was parallelized, since each node is indepen-
dent of all others and data structures are read-only. On the contrary,
the partitioning time only depends on graph size, which is just
slightly higher than the number of triangles in the mesh. Our algo-
rithm ensures that during graph partition we visit each node only
once, independently of the number of input shapes, making the
algorithm efficient even with hundreds of shapes.

The costs of the last two stages of the algorithm, namely cell
labeling and Boolean or BSC operations, are negligible, accounting
for 1%-2% of the total execution time. Cell labeling works on the cell
graph, which is trivially small compared to the DGA, and performs
just a simple visit. A Boolean operation and extraction of the result-
ing shape boundaries just consists of a selection of cells, and a visit
of the cell graph. The alternative cost of computing shapes with
BSC is negligible as well, as it also works on the cell graph. If the
interior of the selected cells is also needed, this is easily obtained
from a single visit of the portion of DGA spanned by them.

Clipping. In 2D vector graphics, Boolean operations are also used
to clip drawings to desired regions. Drawings may consist of solid
shapes and open lines. Our method can be applied seamlessly to this
purpose, too. The arrangement in input consists of all objects in the
drawing, plus the clipping window, which can have any shape. The
corresponding Boolean operation gathers all portions of objects in
the drawing that fall inside the clipping region. The only difference
in the algorithm is that we do not label the arcs in the DGA that
cross open curves of the drawing, which do not bound cells in the
arrangement. Fig. 21 shows an example of clipping operation.

Timings on Mesh Collection. We further validated the speed of our
algorithm on a subset of the Thingi10k dataset [Zhou and Jacobson
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Fig. 20. A gallery of models decorated by executing Boolean operations on geodesic shape arrangements. Models show different scenarios that our algorithm
supports. From left to right: (A) an arrangement of many simple shapes (geodesic circles) traced over a highly rough and complex mesh; (B) a very detailed
shape (the map of Italy contains 3849 vertices) is drawn onto a dense mesh (1M triangles); (C) many disjoint cells with the same label are generated by
overlapping of two complex shapes; (D) an intricate arrangement of hand-drawn shapes and SVG icons on a scanned mesh.

Table 1. Result statistics. We report sizes of the meshes and shapes in input, as well as statistics computed during the algorithm execution. Total execution
time is dominated by the DGA refinement stage, which is influenced by the size of the input shapes and by the number of triangles they cross. While the time
for partitioning the DGA into cells increases with the size of the mesh. The detailed execution times fo the other stages are not reported as they are negligible.

model arrangement DGA refinement time (ms)

name triangles shapes cells curve refined  added total DGA DGA

vertices nodes  nodes refinement  partitioning
cow-lowpoly 372 2 20 901 47 2085 1 1 -
cow-highpoly 5856 2 20 901 310 2904 2 -
t-shirt 206k 5 50 2266 2534 12594 12 9 3
lady 282k 2 161 2281 4895 20955 23 16 7
pumpkin 395k 2 6 636 1693 6399 16 7 9
nefertiti 497k 24 122 22094 10648 74576 64 50 14
lucy 500k 25 46 6080 5340 25404 34 21 13
fertility 500k 112 644 56250 55270 263186 210 192 19
cup 539k 48 205 15808 20236 85798 68 58 10
fat-dragon 970k 6 26 4765 3383 20001 30 11 19
kitten-BSC 250k 5 10 3410 2889 14131 15 11 4
spiked-dragon-BSC 144k 14 16 2165 2460 10966 10 7 3
hand-BSC 143k 22 82 2916 6509 26333 21 17 4

Fig. 21. Clipping a composite drawing with closed and open curves.

2016]. We collected all closed, manifold, single-component meshes
with more than 100k triangles and genus less than 5, discarding
duplicate meshes. We stick to large meshes to obtain reliable statis-
tics on execution times, while the Thingi10k dataset is skewed on
small meshes. In the filtered dataset, mesh size varies between 102k
triangles and 3.1M triangles.

Each mesh was decorated with two overlapping shapes, each con-
sisting of either a single, or multiple geodesic curves, all described
with Bézier splines, randomly selected from a small collection of
22 SVG drawings. In order to find a large enough region for each
drawing, we manually selected a center point on each mesh. Then
we map the SVG control points around this center with random

ACM Trans. Graph., Vol. 41, No. 6, Article 247. Publication date: December 2022.



247:12 « Marzia Riso, Giacomo Nazzaro, Enrico Puppo, Alec Jacobson, Qingnan Zhou, and Fabio Pellacini

orientation, by means of exponential mapping. And we finally trace
the splines to curves, as in [Mancinelli et al. 2022].

We tested our algorithm on a 3.8 GHz desktop with 16 cores. A
gallery of results is shown in figure 22. Execution time ranges from a
minimum of 3 ms to a maximum of 108 ms, although the majority of
tests executed in a mean execution time of 14 ms. This experiment
confirms that the most expensive stages are due to DGA refinement
and partitioning, while just 1% - 2% of total execution time is spent
in propagating labels and evaluating Booleans.

6 LIMITATIONS

Discretization. Our method is intrinsically approximated, since
we discretize both the ambient surface with a mesh, and the input
curves as polylines lying on the said mesh. Thus all our geometries
are piecewise-linear. The accuracy of the approximation of a smooth
solution depends on the resolution of the mesh and of the resolution
of the discretized lines, which are independent from each other.

While this is a limitation, to the best of our knowledge, there exists
no method at the state of the art to address such computations on
smooth geometries. Methods to compute the distance function in
the smooth setting exist, such as on subdivision surfaces [de Goes
et al. 2016]. However, it is not clear how to extend such methods
to extract smooth geodesic lines, which are the integral lines of the
distance field, or, worse, geodesic Bézier curves, let alone computing
the intersections of such objects.

Numerical robustness. As already outlined, in this work we focus
on performance, relying on floating point computations, to achieve
interactivity. This means we cannot provide theoretical guarantees
on robustness. To be fair, floating point arithmetic works remarkably
well in our testing since it proved correct on all our experiments,
mostly due to the fact that we work always in the barycentric coor-
dinate of the unit triangle. Furthermore, our current discretization
of input lines over the mesh is guaranteed to be robust.

If desired, numerical robustness can be addressed simply by sub-
stituting our floating point computations for segment intersection
with robust methods at the state of the art, such as [Attene 2020;
Wein et al. 2021], at the price of slower computations and increased
complexity. In particular, the package available in CGAL [Wein
et al. 2021] may seamlessly substitute all the steps concerning the
computations of intersections and the CDT inside a single triangle.
This would guarantee the topological consistency of the result, al-
though geometric inconsistencies, such as triangle flipping and self
intersections, might still arise after snap rounding.

7 CONCLUSIONS

In this work, we have introduced BoolSurf; a fast and reliable algo-
rithm for computing Boolean operations between geodesic shapes,
providing a second milestone for the porting of 2D vector graphics
to the manifold settings. Our method is capable of correctly han-
dling arrangements on a manifold surface, which admit a consistent
labeling. We detect inconsistent shapes and support both automatic
and manual tools to fix them. Alternatively, we support Boundary-
Sampled Curves, a manifold extension of BSH, which works for
any possible arrangement. We tested our algorithm by manually
designing complex arrangements on large meshes, and by running
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randomized tests on a subset of the Thingi10K dataset. Results show
that in all cases a correct cell arrangement was found and a valid
labeling was assigned to each cell, thus allowing for the correct
execution of Boolean operations.

In the future, we plan to integrate this algorithm in a more com-
prehensive framework for vector graphics on surfaces, by including
the more advanced features present in state-of-the-art 2D editors.
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A PROOF OF THEOREM 1
The proof stems from the following lemma.
LEMMA 3 (BY MCINTYRE AND CAIRNS [1993]). Let us consider the

partition of S induced by the arrangement of a curve y and a set of
generators vy, ..., vag, and let xo be a point of S. One can associate

integers to each of the regions such that at each segment of y the
number to the left of y is 1 greater than the number to the right of y,
and for eachi = 1,...,2g, the number to the left of each segment of v;
is n; less than the number to the right of v;, and the region containing
Xo is numbered zero. Moreover, such a numbering is unique.

To prove the theorem, we first observe that Lemma 3 can be
extended to a set of curves yy, ..., yp. In fact, the homology of their
combination is

h h
[y1+...+ynl = an,j[vl] +... +Z”29,j["29]
j=1 Jj=1

where n; j is the multiplicity of generator v; in the homology of
curve yj. Now we build the labeling of Lemma 3 for each one of
the y; separately; next, we overlay their arrangements and we label
each resulting cell with the sum of the labels of the regions in the
various arrangements containing it. Then the resulting labeling also
fulfills the properties stated in Lemma 3.

Given the labeling above, let us assume that [y; + ... + yp] is
null-homologic. This means that Z;‘:l n;j = 0 for all i, hence the
label does not change when crossing any of the v;. We obtain the
cell arrangement induced by A by removing the generators and
merging the regions adjacent through them without changing their
labels. The resulting labeling differs by one when crossing any y;
from right to left, hence is a consistent labeling for A. Conversely, if
A has a consistent labeling, we offset all labels by the same amount
to have a label zero in the region containing xo. Then we overlay
the generators by splitting regions with them and maintaining the
same labeling. The result is a valid labeling for Lemma 3, where
labels do not change when we cross generators, hence for all i we
must have Z?:l njj =0.
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