
Computing the Riemannian Center of Mass on Meshes

Claudio Mancinellia,∗, Enrico Puppoa

aDIBRIS - University of Genoa (Italy)

Abstract

The Riemannian center of mass (a.k.a. Karcher mean or Fréchet mean) provides the equivalent to the
Euclidean affine average on manifolds. In spite of its many potential applications in computer graphics and
geometric modeling, there exist surprisingly few algorithms to compute it. We present a direct method for
computing the Riemannian center of mass on a triangle mesh. Our method works in the polyhedral metric
and uses a piecewise-linear interpolation of gradients of the distance fields from a set of control points. We
present applications for tracing splines on a surface, comparing to other methods at the state of the art, and
showing that we produce quality results while supporting user interaction.

Keywords: Riemannian center of mass, Karcher mean, Fréchet mean, Geodesics, Triangle meshes

1. Introduction

The Riemannian center of mass (RCM) has been defined by Grove and Karcher (1973) as the solution
of an optimization problem on a Riemannian manifold, which provides a sort of weighted average of a finite
set of points distributed on the manifold. In fact, in a Euclidean space, the RCM reduces to the standard
affine average. See Fig. 1 for an example and Sec. 3 for a formal definition.

<latexit sha1_base64="WtVVLkveaRULEg9uOn1W52LVtO4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gACbo2h</latexit>p1

<latexit sha1_base64="lfjEq2ZVlSJMUvqhpQemAs6Nhh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcD8o2i</latexit>p2

<latexit sha1_base64="TnFXd0WF2keaW9dpfuXYmDfv4Fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdI/75crbtWdg/wlXk4qkKPRL3/2BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWGVAwljbUkjm6s+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsFdo2j</latexit>p3

<latexit sha1_base64="WzyzHJyokecvekWO3sbh1Smwg3A=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOOsmQ2dlhZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsrUoIb6/vfXmFtfWNzq7hd2tnd2z8oHx41TZJqhg2WiES3I2pQcIkNy63AttJI40hgKxrfzfzWE2rDE/loJwrDmA4lH3BGrZNa3YjqTE175Ypf9ecgqyTISQVy1Hvlr24/YWmM0jJBjekEvrJhRrXlTOC01E0NKsrGdIgdRyWN0YTZ/NwpOXNKnwwS7UpaMld/T2Q0NmYSR64zpnZklr2Z+J/XSe3gJsy4VKlFyRaLBqkgNiGz30mfa2RWTByhTHN3K2EjqimzLqGSCyFYfnmVNC+qwVX18uGyUrvN4yjCCZzCOQRwDTW4hzo0gMEYnuEV3jzlvXjv3seiteDlM8fwB97nD5q+j8I=</latexit>

p̄ <latexit sha1_base64="WzyzHJyokecvekWO3sbh1Smwg3A=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOOsmQ2dlhZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsrUoIb6/vfXmFtfWNzq7hd2tnd2z8oHx41TZJqhg2WiES3I2pQcIkNy63AttJI40hgKxrfzfzWE2rDE/loJwrDmA4lH3BGrZNa3YjqTE175Ypf9ecgqyTISQVy1Hvlr24/YWmM0jJBjekEvrJhRrXlTOC01E0NKsrGdIgdRyWN0YTZ/NwpOXNKnwwS7UpaMld/T2Q0NmYSR64zpnZklr2Z+J/XSe3gJsy4VKlFyRaLBqkgNiGz30mfa2RWTByhTHN3K2EjqimzLqGSCyFYfnmVNC+qwVX18uGyUrvN4yjCCZzCOQRwDTW4hzo0gMEYnuEV3jzlvXjv3seiteDlM8fwB97nD5q+j8I=</latexit>

p̄

<latexit sha1_base64="TnFXd0WF2keaW9dpfuXYmDfv4Fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdI/75crbtWdg/wlXk4qkKPRL3/2BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWGVAwljbUkjm6s+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsFdo2j</latexit>p3

<latexit sha1_base64="lfjEq2ZVlSJMUvqhpQemAs6Nhh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcD8o2i</latexit>p2

<latexit sha1_base64="WtVVLkveaRULEg9uOn1W52LVtO4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gACbo2h</latexit>p1

<latexit sha1_base64="5qqAjw1YTtZ9L4PvUnzbaUEklQQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEG+o2k</latexit>p4
<latexit sha1_base64="5qqAjw1YTtZ9L4PvUnzbaUEklQQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEG+o2k</latexit>p4

Figure 1: Left: the Riemannian center of mass p̄ of four points p1, p2, p3, p4 on the surface of a torus with weights
0.47, 0.30, 0.08, 0.15, respectively; the center of mass is joined to the control points with shortest geodesic paths, whose lengths
minimize the energy. Right: a similar configuration of points in the plane and their affine average with the same weights.

Given the many applications of affine averages in computer graphics and geometric modeling, the RCM is
a natural candidate to support computations on surfaces. This approach represents a more direct alternative
to the traditional choice of relying on a parametrization of a surface. Indeed, as discussed by Yuksel et al.
(2019); Nazzaro et al. (2022), parametrization-based methods suffer from a number of drawbacks, which
could be overcome by working in the intrinsic metric of the surface.

∗Corresponding author
Email addresses: claudio.mancinelli@edu.unige.it (Claudio Mancinelli ), enrico.puppo@unige.it (Enrico Puppo)

Preprint submitted to GMP 2023 June 26, 2023



Panozzo et al. (2013) discuss applications of the RCM to splines on surfaces, remeshing, Laplacian
smoothing, texture mapping, texture transfer, etc. In spite of that, computing the RCM has long been
considered too hard to be of practical interest. In fact, while Euclidean affine averages are computed in
closed form, the RCM requires resolving an optimization problem on a manifold, which in turn involves
computing distance fields and their gradients, as well as tracing geodesic curves. For this reason, there exist
surprisingly few algorithms in the literature for its computation. While Panozzo et al. (2013) circumvent
the problem, using an embedding in a higher-dimensional Euclidean space to find an approximate solution,
only recently Sharp et al. (2019b) proposed a direct solution based on gradient descent, which exploits the
relation between the gradient of the squared distance field and the logarithmic map at each point.

In this paper, we present a method for the direct computation of the Riemannian center of mass on
meshes, which is based on an implementation of a general Newton’s method on Riemannian manifolds, as
described by Absil et al. (2008). Our method tackles the problem on the input mesh endowed with the
polyhedral metric. Given the distance fields from the control points at the vertices of the mesh, we estimate
the gradient and the Hessian of the energy function inside each triangle, and we trace the geodesic line from
a given point and following a given tangent vector to proceed towards the solution.

Our method is oblivious of the algorithm used to compute the distance fields; of course, there may be
some trade-off between accuracy and computational cost, which will affect the results of the RCM, too.
Overall, the cost of computing the RCM once for a given set of weights is negligible with respect to the
initial cost of computing the distances fields. In most applications, however, the RCM is computed many
times with varying weights, so this cost may become relevant. We discuss these aspects in the experiments.

We apply our method to curves on surfaces, comparing our results with results obtained with other
methods at the state of the art to address the same problem. In particular, we compare with the Vector heat
(VH) method by Sharp et al. (2019b), showing that our method is more stable and faster by several orders
of magnitude; and with the Weighted average (WA) method by Panozzo et al. (2013), showing that we
produce more accurate results, offering a direct solution to the RCM problem, while being slightly slower.
Besides, our method is much more scalable with respect to the size of the mesh. In fact, while we just
rely on local computations, the VH method requires pre-conditioning a large linear system, which is of the
same size of the input mesh; and the WA method also requires a cumbersome pre-processing step, which
may become unfeasible for large meshes. An implementation of our method is released in open source at
https://github.com/Claudiomancinelli90/RCM_on_meshes.

2. Related work

Riemannian center of mass. The RCM was introduced first by Grove and Karcher (1973) while Karcher
(1977) provides a more extensive treatment of the subject; variations of the same concept are also known as
Karcher mean or Fréchet mean in the literature. Absil et al. (2008) provide algorithms to find the minimum
of functions on a Riemannian manifold, which can be applied to compute the RCM; they take for granted
the necessary differential quantities without addressing their computation, though.

Panozzo et al. (2013) consider the direct computation of the RCM too computationally involved and cir-
cumvent the problem, relying on a high-dimensional embedding, where Euclidean distance can approximate
the geodesic distance on the input manifold. Instead of resolving the RCM on the input, they compute in
closed form a standard affine average in the embedding space; next, they use a Phong projection (which
is a main contribution of their work) to project the result to the embedded surface; finally, they pull the
result back to the original surface. While their method is effective and fast, it requires a cumbersome pre-
processing, it is prone to artifacts from projection, and it does not scale to large meshes. Besides, it provides
no insight for a direct computation of the RCM.

More recently, Sharp et al. (2019b) proposed a first direct algorithm for computing the RCM, as an
application of their Vector heat method. They exploit the relation between the gradient of the squared
distance field and the log map at each point to provide a gradient descent algorithm. Unfortunately, their
algorithm is very slow, since it requires recomputing the log map centered at each point traversed during
descent, and it is also sensitive to perturbations due to computing log maps of moving points.

In Sec.5, we directly compare our results to these two methods.

2

https://github.com/Claudiomancinelli90/RCM_on_meshes


Geodesic queries. The literature about computing geodesics on meshes is vast. Surveys can be found in
Bose et al. (2011); Crane et al. (2020). Here we review just some results relevant to our work.

The computation of the distance field from a source is a fundamental component that we take for
granted. Exact methods for polyhedral surfaces stem from the works of Mitchell et al. (1987) and Chen
and Han (1990) and produce a data structure which, when queried at a generic point, returns its exact
distance from the source in the polyhedral metric. Graph methods restrict the possible paths to chains of
arcs in a pre-computed graph, thus providing an approximate solution. See, e.g., Adikusuma et al. (2020);
Nazzaro et al. (2022) for discussions on the trade-off between accuracy and speed. PDE methods compute
approximate geodesic distances on a (unknown) smoothed surface just at the vertices of an input mesh:
Kimmel and Sethian (1998) proposed the FMM, which is based on wavefront propagation; and Crane et al.
(2013) proposed the heat method, which is based on diffusion. In our experiments, we rely alternatively on
the exact polyhedral algorithm VTP of Qin et al. (2016), or on a simple graph-based solver.

The two-points boundary value problem consists of finding the shortest path between two points. The
data structure built with the polyhedral methods mentioned above may be used to quickly extract the exact
polyhedral shortest path, too. When the distance field is known just at the vertices, as in PDE methods, it
is customary to extend it linearly inside triangles and trace the shortest path by descending the piecewise-
constant gradient of this function. Several other works address the direct computation of the shortest path
without pre-computing the distance field, some notable examples being Sharp and Crane (2020); Xin and
Wang (2007). Such algorithms need an initial guess and provide just a locally shortest solution that is
homotopic to the initial guess. In our experiments, we consider the two-points boundary problem as an
application of the RCM for just two control points.

The initial value problem consists of tracing a geodesic line from a given point, with an initial tangent,
and for a given length. This problem was studied in the polyhedral metric by Polthier and Schmies (1998):
a geodesic proceeds straight inside triangles and across edges, by unfolding adjacent triangles to the same
plane; if it hits a vertex v, they impose that the ingoing and outgoing directions split the total angle about
v in two halves. We use this solution in the context of our algorithm.

3. The Riemannian center of mass

Let M be a compact and piecewise-smooth manifold1 endowed with the geodesic distance d : M×M → R,

d(x, y) = min
γ

length(γ),

where γ varies over all curves joining x and y on M . Given points p1, . . . , ph ∈ M , henceforth called the
control points, and weights w1, . . . , wh ∈ R, we define the energy function Kp1,...,ph;w1,...,wh

: M → R

Kp1,...,ph;w1,...,wh
(p) =

h∑
i=1

wid(p, pi)
2. (1)

The Riemanninan center of mass (RCM) of the control points with the given weights is defined

RCM(p1, . . . , ph;w1, . . . , wh) = arg min
p∈M

Kp1,...,ph;w1,...,wh
(p). (2)

In the following, whenever no ambiguity arises, we will denote the energy simply with K while omitting the
subscripts. If M is a Euclidean space, then the solution to Eq. 2 is the usual affine average p̄ =

∑h
i=1 wipi.

Karcher (1977) provides a condition of existence and uniqueness of the solution of Eq. 2, which requires
all points pi to be contained inside a strongly convex ball. While this requirement is very strong, in practice
numerical solutions can be found provided that the control points are not too far from each other and the
space in between is not too “bumpy”. This makes the computation of the RCM inherently sensitive to the
roughness of M in a variational sense. We discuss the limitations that follow in Sec.5.

1In Grove and Karcher (1973), the RCM is defined for a Riemannian manifold, hence smooth. We relax this definition to a
piecewise-smooth manifold to encompass the polyhedral case. While the definition and the method proposed in this work are
well-posed even in this relaxed setting, it remains intended that all the theory of Grove and Karcher (1973); Karcher (1977),
e.g., about conditions for the energy to be convex, refers to the smooth Riemannian setting.

3



Algorithm 1: Computation of the RCM with Newton’s algorithm

Input: Surface M , Control points pi, Weights wi, Warm start q
Output: Riemannian center of mass p̄

1 if q 6=NONE then
2 p̄← q
3 else
4 k ← argmaxiwi
5 p̄← pk

6 while ‖gradK(p̄)‖ > ε do
7 solve the Newton equation HessK(p̄)s = −gradK(p̄)
8 γ ← trace geodesic(p̄, s)
9 p̄← argminp∈γ‖gradK(p)‖

10 return p̄

4. RCM in the polyhedral metric

Under the assumption that energy K is convex, the RCM can be found by starting at an arbitrary point
and descending the gradient of K. If M is smooth up to the second order, then the Hessian of K can
be computed, too, and a Newton’s method can be applied for faster convergence. While our input is just
piecewise-smooth, we first discuss the solution in the smooth setting, then we discuss how to walk from one
smooth piece to another to find the minimum.

Absil et al. (2008) provide the basic algorithms for finding the minimum of a generic convex function on
a Riemannian manifold. In Algorithm 1, we adapt their Riemannian Newton’s method to the computation
of the RCM. While the general schema is a standard iterative walk towards the minimum, this version has
the following peculiarities:

1. lines 1-5 initialize the search: if a warm start q is not provided, the search starts at the control point
with the largest weight; the warm start will be crucial in the applications presented in Sec.5;

2. at lines 6 and 7, we need the gradient grad K and the Hessian Hess K, which are intended in the
Riemannian sense;

3. the Newton equation at line 7 is a 2× 2 linear system that takes the Hessian matrix and the gradient
of K expressed in the tangent plane Tp̄M and returns a vector s in the same tangent plane;

4. at line 8, we need to trace a geodesic from point p̄ of M with given tangent vector v, i.e., solving the
initial value problem (see Sec.2);

5. line 9 implements the line search algorithm (see Absil et al. (2008) 4.2); in our case, the argmin can
be found while tracing the geodesic γ, hence it requires constant time after executing line 8.

From now on, we assume that M is a triangle mesh with vertex set V . In the following, we present
solutions for the items 2 and 4 above, also discussing how to deal with the non-smoothness of M across
edges and vertices. We assume that the distance fields sourced at the control points

dpi(p) = d(p, pi)

for i = 1 . . . h are given at all vertices of V . These distance fields can be computed with any method at the
state of the art (see Sec.2). Note that, in the applications, the RCM is evaluated many times for the same
control points with varying weights, thus the cost of computing the distance fields will be amortized.

We estimate the gradient and Hessian of the distance fields of the control points p1, . . . , ph once when
they are given. Then we compute the gradients and Hessian of energy K on-the-fly by combining them for
varying weights w1, . . . , wh.

4



Figure 2: Discrete parallel transport by Knöppel et al. (2013). For a given triangle t incident at vertex v, we consider the
centroid of t (black bullet); the red and magenta lines represent the reference directions in the tangent space TvM of v (left)
and on t ∈ M (right), respectively. The straight line segment connecting v to the centroid of t (black arrow in TvM and
dashed line on M), form angles θvt and θtv with such reference directions, respectively. To parallel transport a vector from
the tangent space of v to the tangent space of t, we rotate it by the angle θtv + π − θvt, where π takes care of keeping the
orientation consistent when moving from one tangent space to the other. This imposes that the angle that such vector forms
with the (trivial) geodesic connecting v to the centroid of t remains constant when measured in the tangent space of t.

In order to estimate such differential quantities, we endow M with a discrete differential structure, by
assuming the Euclidean metric on each triangle. The tangent plane at each point in a triangle is identified
with the plane of the triangle itself. The metric can be extended through the edges by unfolding the
incident triangles to the same plane. At the vertices, however, an isometric unfolding is not possible in
general. Under a discrete approach, a tangent plane is defined at each vertex v, by rescaling the angles of
its incident triangles for a factor 2π/Θv, where Θv is the total angle about v spanned by such triangles.
This construction allows us to define a discrete parallel transport. The approach proposed by Knöppel et al.
(2013), which is illustrated in Fig. 2, resulted effective for our purposes; more sophisticated solutions have
been proposed by Liu et al. (2016), which could be used alternatively. Note that, all quantities needed for
the parallel transport can be pre-computed on the input mesh.

Given the values f1, . . . , fn at all vertices of V of an otherwise unknown function f (a distance field from
one of the control points in our case), the easiest and very popular approach to extend f to the rest of M is
by piecewise-linear interpolation on triangles; this implies that the gradient of f is constant in each triangle
while the Hessian is null. Such an approach cannot be applied to our problem, because the minimum of
energy K would always occur at vertices of M , thus leading to discontinuous solutions for a fixed set of
control points and weights w1, . . . , wh that vary with continuity. We rather need to estimate a gradient
that is continuous over the domain. To this aim, we estimate the gradient of any sampled function f at
each vertex vi based on its value at vi and at all its neighbors vj . We start with a constant gradient vt
at each triangle t, as above; then we parallel transport such vectors from each triangle tj incident at vi to
the tangent plane TviM by means of the discrete connection; and we finally estimate the gradient at vi by
computing their average weighted by the areas of triangles:

gradfi =
1∑

tj∈N (vi)
Aj

∑
tj∈N (vi)

AjPtj ,vi(vtj ) (3)

where Aj is the area of tj , N (vi) denotes the 1-ring of vi, and Ptj ,vi denotes the parallel transport of vectors
from TtjM to TviM . Note that this is equivalent to estimate gradfi as an average of gradf on N (vi) by
applying Gauss-Green with piecewise linear interpolation of f along its boundary. Also note that, since
each vj is a linear combination of the values of f at the vertices of tj , Eq.3 is a linear combination of
the values of f at the vertices of V , too, where the coefficients in linear combinations depend just on the
geometry of M . Thus, the computation of the gradient for all vertices is efficiently expressed as a matrix
vector multiplication gradf = GM f where GM is a precomputed sparse matrix that depends just on M , and
f = [f1, . . . , fn]T is the vector of values of f at the vertices of V .

5



Next, we linearly interpolate the gradient vectors at the vertices to obtain a piecewise-linear vector field
X over M , which will we adopt as an estimate of gradf . To this aim, we parallel transport the vectors
defined at the vertices of a triangle t to the tangent plane TtM and we compute their affine weighted average,
where weights are given by the barycentric coordinates of a generic point p in t. Let Xt denote the linear
restriction of X to triangle t. Since Xt is not necessarily irrotational - as a gradient field must be - we
estimate the Hessian of f inside t by first computing the Jacobian of Xt and then taking the symmetric
matrix that minimizes the Frobenius distance from it. In formulas:

Hessft =

(
a b+c

2
b+c

2 d

)
where

(
a b
c d

)
= J(Xt).

After obtaining the step s from line 7 of Algorithm 1, we compute the geodesic γ with the method of
Polthier and Schmies (1998). The result is a polyline having its joints just at intersections with edges of M .
We compute the gradient of K at all such points while tracing γ, and we select the next point p̄ accordingly.
In case p̄ lies on an edge or at a vertex, we simply treat it as a point belonging to one of its incident triangles,
using the differential properties at p̄ as computed from such triangle. Our implementation of Polthier and
Schmies (1998) deals with such corner cases while propagating the geodesic line.

Note that, since the gradient field Xt is defined analytically inside each triangle t, we can test whether
it vanishes inside t, by resolving a simple 2× 2 linear system. We optimize our search by adding this check
each time we switch a triangle during the search, right after line 9 of Algorithm 1. In case the zero of Xt is
found, we directly jump to the corresponding point and the algorithm ends.

As discussed in Sec. 3, if the control points do not lie in a strongly convex ball, the energy K may be
non-convex, thus the RMC may not be well defined or unique. In these cases, pathological situations may
occur, for specific combinations of weights, in which a whole valley of minima appear; small perturbations
of such weights make the minimum jump from one end of the valley to the other; see, e.g. examples in
Mancinelli et al. (2022). We can detect such situations by testing at each cycle whether the Hessian is
positive-definite. If it is not, we just stop the search.

5. Results

We present applications to curves on a surface. Although this is certainly not exhaustive in terms of
the potential applications, it involves resolving many instances of the RMC for varying weights, providing a
suitable scenario to demonstrate how our method improves the state of the art.

For the computation of distance fields, we rely alternatively on the exact polyhedral algorithm VTP of
Qin et al. (2016), or to a graph-based solver: VTP provides a more accurate reference, allowing us to reduce
any bias from errors in the evaluation of the distance fields; the graph-based solver provides a much faster
solution, allowing us to support user interaction. All experiments are executed on a Mac PowerBook M1
with 16GB memory, running on a single core.

We compare our results with results obtained with the Vector heat method of Sharp et al. (2019b)
(henceforth VH), which is the only algorithm to date for the direct computation of the RCM on meshes, to
the best of our knowledge. And we compare with the indirect and approximate Weighted averages method of
Panozzo et al. (2013) (henceforth WA), which is based on embedding in a high-dimensional space, Euclidean
distances, and Phong projection. For VH, we use the code from the Geometry Central library of Sharp et al.
(2019a); for WA we use code provided by the authors. Note that, while our method and WA admit control
points at any location of the mesh, the VH software supports just control points at vertices. For this reason,
we apply this limitation in all results concerning comparisons. For the simplest case of tracing a shortest
geodesic path (i.e., a linear spline), we also compare with a straightforward, yet popular, approach based on
the piecewise-linear interpolation of the distance field.

Two points boundary value problem. For any two points p, q ∈ M , which are connected with a unique
shortest path γp,q with γ(0) = p and γ(1) = q, their RCM with weights (1−w) and w is always defined and
lies at γp,q(w). Thus, the RCMs of p and q, for w varying in [0, 1], can be used to trace the shortest path

6



Linear Vector Heat WA Ours

500 triangles 
(flat wireframe)

50k triangles 
(smooth shading)

Figure 3: Shortest geodesic paths between two points on two meshes at different resolutions obtained with: gradient descent
on a piecewise-linear interpolation of the distance field (magenta); RCM with VH (blue); WA (dark green); RCM with our
method (red). The black line is the reference shortest path computed with an exact polyhedral solver. Blue arrows in the
blow-up denote the constant gradients at triangles.

between them. Although this is certainly not the fastest way to address this problem, it provides a good
test for the accuracy of our algorithm.

In Fig. 3, we compare our solution with the solutions computed with a simple descent of the piecewise-
constant gradient of the distance field from p, which is linearly interpolated inside each triangle, with the
RMC algorithm based on Vector heat and with the WA. For all these experiments, distance fields have
been computed with the VTP algorithm of Qin et al. (2016); we also take as a reference path the solution
obtained with the same solver (black lines). We present results on two meshes representing a torus: a mesh
consisting of 50k triangles with a regular tessellation; and a tessellation containing just 500 triangles, which
has been obtained with a drastic simplification of the former. We choose this synthetic model because it
provides a smooth shape on which the trajectory of geodesics is rather intuitive.

For our method, as well as for VH, we use a warm start, which is initialized at point p in the first call
of the RMC algorithm; while the solution from the previous call is used as a warm start for the next. Since
the weight w is changing for small steps at each iteration, the warm start is always expected to lie very close
to the solution.

The simple gradient descent presents artifacts on the coarse mesh, while it performs well on the hi-res
mesh. The artifacts are mainly due to the discontinuity of the gradient field across edges. For example, it
may happen that the gradient directions at two adjacent triangles point towards the edge shared by these
two triangles. In this case, we are forced to follow the edge direction and restart from one of its vertices
(top-left close up in Figure 3). With other datasets we have experienced drifts from the exact polyhedral
solution on high resolution meshes, too, which are similar to those of VH on the coarse mesh. On the other
hand, this method is extremely fast, with running times in the order of milliseconds for all curves we traced.

The solution obtained with VH is a bit unstable, producing wiggly lines in most cases. Such oscillations
are probably due to an unstable estimate of directions in the log map for a moving point. Note that, VH
does not aim at approximating geodesics in the polyhedral metric, but rather on an underlying smooth

7



Figure 4: Splines computed with Vector heat (blue), WA(dark green) and our algorithm (red) on two different meshes
representing the same object, with 1000 triangles and 50k triangles, respectively. Each spline consists of four segments, each
sampled with 4096 points.

manifold. Thus, it should not be compared to the reference curve in terms of trajectory, but rather in terms
of “visual smoothness”. Both WA and our method produce smooth curves, but the results obtained with
WA visibly deviate from the exact result in the middle portion of the curve, this behavior being consistent
with the results on spline curves (see below).

In terms of performances, VH is very slow, while WA is very fast, but only after a rather expensive
pre-processing time. The high computational cost of VH is due to the need of computing the log map at
each point p during gradient descent, which is equivalent to estimating the distance field from p and occurs
many times during curve tracing. Conversely, our method computes the distance fields from the control
points just once in the beginning, while Algorithm 1 requires just local computations based on such fields
during the search.

The first two rows of Table 1 show a comparison of the running times. Note that, the times for tracing
in our method include also the computation of the distance fields, besides the cost of Algorithm 1. While
on the coarse mesh such costs are of the same order of magnitude, on the hi-res mesh the cost of VTP
dominates by one order of magnitude while the time taken by Algorithm 1 is comparable with that of WA.

Splines. We now present applications to cubic rational Bézier and B-spline curves. Spline curves in the
Euclidean settings are all defined as weighted averages of a set of control points, with weights given by
parametric functions, where the parameter varies in a given interval on the real line. See, e.g., Farin (2001).
Spline curves on a surface may be defined by just replacing the affine weighted average with the RCM. In a
nutshell, a generic spline on a manifold M can be described by equation

s(t) = arg min
p∈M

n∑
i=0

Ni(t)d(p, pi)
2 (4)

where the Ni’s are cubic real functions forming a basis for the given spline scheme, the pi are the control
points of the curve, and parameter t varies on the interval of definition of the curve. Hence, s(t) can be
evaluated for a given value of t by resolving the RCM problem. We trace curve s(t) by taking a given number
of samples (4096 in our experiments) regularly distributed in its interval of definition, and evaluating s(t)
at each of them. Points corresponding to consecutive values of t are finally connected with shortest geodesic
paths. This provides a “polygonal” approximation that converges to the curve while increasing the number
of samples.

In the following, we compute all distance fields with a graph-based geodesic solver. The underlying
graph is built once when the mesh is loaded and searched in all subsequent computations. The graph has
one node per vertex of the mesh; each vertex is connected to the vertices in his k-ring with arcs; each arc
is weighted with the corresponding polyhedral geodesic distance between its endpoints, which is computed
with a variation of the algorithm of Xin and Wang (2007). We use k = 6 in all experiments. A field from a
point p, which is not a vertex, is computed by augmenting the graph on-the-fly, with arcs that connect p to
the vertices of the triangle t containing it, as well as of triangles surrounding t.

8



model curve VH WA ours
name triangles segs. pre (s) trace (s) pre (s) trace (ms) pre (s) trace (ms) update (ms)

torus 500 1 0.04 3.6–3.9 3 14 (VTP) 5–7 –
torus 50k 1 0.4 750–955 129 14 (VTP) 370 –
kitten 1k 4 0.04 31 2 29 3 19 8
kitten 50k 4 0.4 3458 133 23 22 106 41
fertility 100k 16 – – 274 173 45 288 63
bunny 140k 17 – – 388 51 64 905 110
armadillo 350k 23 – – – – 185 2937 268
nefertiti 496k 6 – – 2085 87 233 1374 402
lion 1M 15 – – – – 456 6850 942

Table 1: Compared time performances of tracing curves with the VH method, the WA method, and ours. Sampling rate is 4096
points per curve segment. We report the size of the mesh, the number of curve segments, and the time for tracing each curve.
Pre-processing times concern operations executed just once per dataset: pre-factorization of a matrix for VH; computation of
the embedding for WA; and construction of the graph solver for our method (VTP does not require any pre-processing). The
tracing times are given in seconds for VH and in milliseconds for WA and our method. The times for our method include the
computation of the distance fields from the control points, too. The last column shows the time needed to update a curve upon
dragging one of its control points. We used the VTP algorithm for the first two rows (shortest paths) and the graph solver
with k = 6 for the remaining rows (B-splines). We did not perform experiments with VH on large meshes due to the long
processing times. WA failed to produce the embedding for the armadillo and lion models.

We compare our solution with those obtained with VH and WA, by tracing curves of different length on
meshes of different size. We use the same warm start, as in the previous case, for VH and our method. Again,
our solution and WA are fast and have a smooth appearance, by they have slightly different trajectories;
while the solutions obtained with VH are more similar to ours, but the algorithm is very slow, for the same
reason outlined above. WA requires cumbersome times of pre-processing on large meshes and cannot scale
beyond the sizes that we report in these experiments, while our method has no such limitations. See Fig. 4
for a visual comparison on two meshes at different resolutions and Table 1 for the running times. As before,
the times reported in Table 1 for tracing a curve with our algorithm also include the computation of the
distance fields from the control points, which are computed just once per curve. In the last column, we also
report the time to update a curve upon dragging one of its control point pi, which requires recomputing the
distance field only for pi as well as tracing just the portion of curve affected by pi (four segments of curve
for a cubic B-spline).

Our method can support interactive editing of control points on meshes up to several hundred thousand
triangles. In Fig. 5 we show a few results on the meshes of Table 1. Note that, in some cases, generating
long splines consisting of many segments may take more than one second; however, update times remain
compatible with interaction in most cases. It is worth pointing out that while we present results obtained with
a fine sampling rate (4096 points per segment), which is aimed at testing the robustness of the methods, a
much coarser sampling would be sufficient for interactive usage. For instance, with 256 samples per segment,
the curve on the lion dataset can be updated after moving one control point in just 197 ms, of which 161
ms are required to update the distance field, and roughly 10 ms to update each segment of spline with
Algorithm 1.

Rational Splines. Being able of computing weighted averages directly translates in widening the range of
curves that one can trace on a surface mesh. This is one of the main improvements with respect to Mancinelli
et al. (2022), where the authors proposed two algorithms to trace Bézier curves on triangle meshes. Since
their approach is based on subdivision schemes, it cannot be applied to rational splines. Our algorithm,
on the other hand, can be used to trace both rational Bézier and B-spline curves, widening the editing
possibilities of the user.

For example, we can edit a rational Bézier curve with control points {p1, p1, p2, p4} by acting on the
weights {w1, w1, w2, w4}: Fig. 6 a) shows the uniform case, i.e. w1 = w2 = w3 = w4 = 1, while Fig. 6 b)
shows the curve obtained by setting w1 = w4 = 0.05 and w2 = w3 = 5. Recently, Ramanantoanina and

9



Figure 5: Splines traced with our method on a variety of models (red). In all cases, user interaction is supported. Computation
times are reported in Table 1, compared with times for computing the same curves with WA (dark green).

Hormann (2021) showed that expressing a rational Bézier curve in barycentric form may increase the leeway
one has in terms of editing. In a nutshell, the curve is expressed as a weighted average of some interpolation
points q1, . . . , qn and weights depending on β1 . . . , βn. Figure 6 c) and d) shows two examples of these curves
in the surface setting, where we set β2 = 4 and β2 = 0.5, respectively, obtaining results consistent with the
ones in the Euclidean setting. See Figure 5 in Ramanantoanina and Hormann (2021). It should be noticed
that, acting on the weights of a rational curve is way more efficient than acting on its control points, since,
in the former case, no distance field needs to be recomputed.

Of course, since rational Bézier curves may be used to reproduce
conic sections, it seems interesting to investigate to which extent the
porting of these curves to the surface setting preserves their properties.
For example, it is natural to ask if the construction of a circle with
rational Bézier curves performed on a surface consists of points that
are equidistant from a given point, i.e. a geodesic circle. This may be
useful when one is interested in estimating the isolines of some distance
field sourced at some point p. Usually, such contours are computed
by detecting the edges with endpoints v0, v1 such that dp(v0) < r and
dp(v1) > r, where r is the desired radius, and finding the point q
along such edge such that dp(q) = r through linear interpolation. The
isoline is then computed by connecting with straight line segments the
points thus obtained. Since this procedure assumes the linearity of the
geodesic distance, it performs poorly on coarse meshes (blue line in the inset). On the other hand, the curve
obtained by tracing circular arcs with our algorithm seems to produce a much smoother result.

5.1. Limitations

As already outlined, the RCM has inherent limitations from the requirement that all control points must
lie inside a convex ball. Mancinelli et al. (2022) studied the Bézier curves on surfaces, showing that the RCM

10



<latexit sha1_base64="WtVVLkveaRULEg9uOn1W52LVtO4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gACbo2h</latexit>p1

<latexit sha1_base64="lfjEq2ZVlSJMUvqhpQemAs6Nhh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcD8o2i</latexit>p2

<latexit sha1_base64="TnFXd0WF2keaW9dpfuXYmDfv4Fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdI/75crbtWdg/wlXk4qkKPRL3/2BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWGVAwljbUkjm6s+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsFdo2j</latexit>p3

<latexit sha1_base64="WtVVLkveaRULEg9uOn1W52LVtO4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gACbo2h</latexit>p1

<latexit sha1_base64="lfjEq2ZVlSJMUvqhpQemAs6Nhh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcD8o2i</latexit>p2

<latexit sha1_base64="TnFXd0WF2keaW9dpfuXYmDfv4Fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdI/75crbtWdg/wlXk4qkKPRL3/2BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWGVAwljbUkjm6s+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsFdo2j</latexit>p3

<latexit sha1_base64="hQrRdnmHcUm4onQky6I90Ij8VcU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcD9I2i</latexit>q1

<latexit sha1_base64="Bt6P+fA60zaAhMACW3I89yBH+dA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmZ+64lrI2L1gOOE+xEdKBEKRtFK94+9Sq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmSOfFeXc+Fq05J5s5hj9wPn8ABXiNow==</latexit>q2

<latexit sha1_base64="hQrRdnmHcUm4onQky6I90Ij8VcU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0s4m7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcD9I2i</latexit>q1

<latexit sha1_base64="Bt6P+fA60zaAhMACW3I89yBH+dA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmZ+64lrI2L1gOOE+xEdKBEKRtFK94+9Sq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmSOfFeXc+Fq05J5s5hj9wPn8ABXiNow==</latexit>q2

<latexit sha1_base64="5qqAjw1YTtZ9L4PvUnzbaUEklQQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEG+o2k</latexit>p4
<latexit sha1_base64="5qqAjw1YTtZ9L4PvUnzbaUEklQQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEG+o2k</latexit>p4 <latexit sha1_base64="fWuLcod2hAlqHAuStAiNWMHJm2k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnV1nek3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+cS1EZF6wHHM/ZAOlOgLRtFK94/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4ABvyNpA==</latexit>q3

<latexit sha1_base64="fWuLcod2hAlqHAuStAiNWMHJm2k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnV1nek3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+cS1EZF6wHHM/ZAOlOgLRtFK94/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4ABvyNpA==</latexit>q3

<latexit sha1_base64="xgJTusW1G8L7V0OdG6XXP3FfvE0=">AAACA3icbVC7SgNBFJ2Nrxhfq3baDAZBm7Abg9oEgjaWEcwDkmWZnUySIbMPZu4awxKw8VdsLBSx9Sfs/BsnyRaaeODA4Zx7mbnHiwRXYFnfRmZpeWV1Lbue29jc2t4xd/fqKowlZTUailA2PaKY4AGrAQfBmpFkxPcEa3iD60neuGdS8TC4g1HEHJ/0At7llIC2XPOgDewBEnI6Hrp2eegWNc80S2XbNfNWwZoCLwo7FXmUouqaX+1OSGOfBUAFUaplWxE4CZHAqWDjXDtWLCJ0QHqspWVAfKacZHrDGB9rp4O7odQMAE/d3xsJ8ZUa+Z6e9An01Xw2Mf/LWjF0L52EB1EMLKCzh7qxwBDiSSG4wyWjIEZaECq5/iumfSIJBV1bTpdgz5+8KOrFgn1eKN2W8pWrtI4sOkRH6ATZ6AJV0A2qohqi6BE9o1f0ZjwZL8a78TEbzRjpzj76A+PzB0ZAlqI=</latexit>

a)w1 = w2 = w3 = w4 = 1
<latexit sha1_base64="+WzmEpWxaU+ZvAAl+gRXf5OFmhg=">AAACF3icbVDLSgNBEJz1GeNr1aOXwSAoyLKr8XEJBL14jGCMkIRldtIxQ2YfzPQaw5K/8OKvePGgiFe9+TdOYg4aLWgoqrrp7goSKTS67qc1NT0zOzefW8gvLi2vrNpr61c6ThWHKo9lrK4DpkGKCKooUMJ1ooCFgYRa0D0b+rVbUFrE0SX2E2iG7CYSbcEZGsm3nQbCHWbB7qDne6WeXyy5jnu41+johHHIXGefhwPa8w9G3qFvF4w/Av1LvDEpkDEqvv3RaMU8DSFCLpnWdc9NsJkxhYJLGOQbqQazqctuoG5oxELQzWz014BuG6VF27EyFSEdqT8nMhZq3Q8D0xky7OhJbyj+59VTbJ80MxElKULEvxe1U0kxpsOQaEso4Cj7hjCuhLmV8g5TjKOJMm9C8CZf/kuu9h3vyCleFAvl03EcObJJtsgO8cgxKZNzUiFVwsk9eSTP5MV6sJ6sV+vtu3XKGs9skF+w3r8AkdmdqA==</latexit>

b)w1 = w4 = 0.05, w3 = w4 = 5

<latexit sha1_base64="QDyAgpzeXhDrxjWI0n7bULTKB0g=">AAACJXicbVDLSsNAFJ34tr6qLt0Ei6AgJalFXVgQ3bisYFuhCWEyvbFDJw9mbsQS8jNu/BU3LiwiuPJXnLZZ+DowzOGce7n3Hj8RXKFlfRgzs3PzC4tLy6WV1bX1jfLmVlvFqWTQYrGI5a1PFQgeQQs5CrhNJNDQF9DxB5djv3MPUvE4usFhAm5I7yIecEZRS175zEF4wKx3kDs+IPXsxvQ/atiHTl8llEFmVWssLPxawwkkZZmdZ/XcK1esqjWB+ZfYBamQAk2vPHJ6MUtDiJAJqlTXthJ0MyqRMwF5yUkV6JEDegddTSMagnKzyZW5uaeVnhnEUr8IzYn6vSOjoVLD0NeVIcW++u2Nxf+8borBqZvxKEkRIjYdFKTCxNgcR2b2uASGYqgJZZLrXU3WpzoF1MGWdAj275P/knatah9X69f1yvlFEccS2SG7ZJ/Y5ISckyvSJC3CyCN5Jq9kZDwZL8ab8T4tnTGKnm3yA8bnF80KpNY=</latexit>

d)�1 = �3 = 1, �2 =
1

4

<latexit sha1_base64="0RDjbiUQMbIuHlTA7ajFRkPEX8M=">AAACG3icbVDLSgNBEJyNrxhfUY9eFoOgIGF3DeolEPTiMYJ5QDaE2UknGTL7YKZXDEv+w4u/4sWDIp4ED/6Nk2QPmlgwTFHVTXeXFwmu0LK+jczS8srqWnY9t7G5tb2T392rqzCWDGosFKFselSB4AHUkKOAZiSB+p6Ahje8nviNe5CKh8EdjiJo+7Qf8B5nFLXUyTsuwgMm7GTseoC0Y5dn/1nZPnUHKqIMEqvoMD/1nXKpky9YRWsKc5HYKSmQFNVO/tPthiz2IUAmqFIt24qwnVCJnAkY59xYgR40pH1oaRpQH1Q7md42No+00jV7odQvQHOq/u5IqK/UyPd0pU9xoOa9ifif14qxd9lOeBDFCAGbDerFwsTQnARldrkEhmKkCWWS611NNqCSMtRx5nQI9vzJi6TuFO3zYum2VKhcpXFkyQE5JMfEJhekQm5IldQII4/kmbySN+PJeDHejY9ZacZIe/bJHxhfP1pOoFg=</latexit>

c)�1 = �3 = 1, �2 = 4

Figure 6: Example of a rational Bézier curves traced with our methods: a)uniform rational cubic Bézier curve, b)cubic
rational Bézier curve with weights w1 = w4 = 0.05 and w2 = w3 = 5, c) quadratic rational Bézier curve in barycentric form
with weights β1 = β3 = 1 and β2 = 4, d) same curve of c) with β2 = 1

4
. For more detail about the definition of c) and d), we

refer to Ramanantoanina and Hormann (2021).

Figure 7: Examples of failure: broken curves are generated when control points are too far from each other. The same
limitations apply to the other methods, too.

can fail, producing broken curves, if the control points are too far from each other. This is independent of
the method used to compute the RCM: indeed, they show failure cases with both VH and WA.

On a sufficiently smooth surface, since each segment of a spline is determined
by few consecutive control points, the RCM is a viable solution as long as consecutive
control points are placed relatively close to each other, as in the examples shown above.
However, on a relatively rough surface, convex balls may become tiny, to the point of
coinciding with the 1-ring of vertices. While we have experienced quite some resiliency
of our method to the roughness of surfaces (see, e.g., the armadillo in Fig. 5), trying
to resolve the RCM when the mutual distance of the control points is large inevitably
leads to unstable results. Fig. 7 shows some examples of failure. Concerning specific
limitations of our algorithm, we have experienced some sensitivity to the accuracy of
the distance fields and, especially, of their differential quantities. We have obtained the
most stable results by working on meshes with fairly regular triangles, and computing
the distance fields with VTP, which is however too slow to support interaction. We have achieved a good
trade-off between accuracy and performance in the evaluation of the distance fields by using a graph solver,
where each vertex is connected with exact distances to all the vertices in its k-ring, by setting k = 6. This
graph has a moderate cost of pre-processing and is fast enough to traverse when computing the distance
fields. As a comparison, the inset shows how a less accurate estimate of the distance field, computed on a
graph with k = 2, affects the same curve of Figure 4 on the 50k kitten.

11



(a) (b) (c) (d)

Figure 8: Sensitivity to the meshing: a cubic B-spline on the plane, ground truth (a); our results: on a Delaunay tessellation
(b); on a triangulated regular grid (c); and on a highly anisotropic tessellation (d). While we perform well on the Delaunay
mesh, our results may become rather unstable on highly biased meshes, producing wiggly curves.

The quality of the mesh may severely affect the local method that we use to estimate the gradient field.
In Figure 8, we compare the ground truth of a spline computed in the plane, with results computed with
our method on three different tessellations of the plane. On a Delaunay tessellation from a fairly regular
distribution of points, our algorithm produces a result consistent with the ground truth. On a regularly
triangulated quad grid, and on a highly anisotropic tessellation, however, the results become unstable,
producing wiggly curves. This is due to a poor resiliency of the gradient estimator of Eq. (3) to these
tessellations, in which the 1-ring of each vertex has an uneven, biased distribution. In fact, the average
technique we use to estimate the gradient is very sensitive to the local geometry around a vertex, especially
near critical points of the underlying distance field (see, e.g., ?). This is particularly true on anisotropic
meshes, where the algorithm may even fail detecting the minimum at some steps, thus produces broken
curves. A more robust gradient estimator may make our method more resilient to bad meshes with irregular
1-rings and skinny triangles. We plan to investigate this more thoroughly in future works.

5.2. Discussion

Our method clearly demonstrates superior performances compared to VH,
which is the only other direct method for computing the RCM. WA, on the
other hand, is fast and generates visually pleasing results in most cases, but
it provides just a heuristic approximation of the RCM while it cannot guar-
antee that an embedding can be found, in which the Euclidean distance can
approximate the original geodesic distance well enough. Therefore, it provides
no control on the correctness of the result. In fact, the embedding procedure
fails with some meshes, because no acceptable embedding can be found. This
can be clearly seen in Fig. 3, where the geodesics computed with WA are
quite different from the ones computed with the exact polyhedral solver. The
inset shows an example on spline curves from Fig. 5, where we plot the curve
obtained with WA (dark green) together with our results (red). Note how our curve follows a smoother

12



trajectory. Moreover, the pre-processing times of WA are high, and the method can hardly scale to large
meshes also because of the large memory footprint used during pre-processing.

6. Concluding remarks

We have presented a direct method for the numerical computation of the Riemannian Center of Mass on
a triangle mesh. Our method is based on a discrete Riemannian Newton’s method, using a piecewise-linear
estimate of the gradient of the distance fields from the control points, and a piecewise-constant estimate
of their Hessian. Our method returns stable results under the conditions of existence and uniqueness of
the RCM, beating the only other existing direct method in terms of both accuracy and time performance.
Coupled with a geodesic graph solver, our RCM algorithm provides a viable solution to support the inter-
active design of splines also on large meshes; while an exact geodesic solver may offer the best quality for
final rendering at the cost of some more time. We applied our algorithm to spline tracing, supporting both
rational Bézier and B-spline curves. Under these premises, we believe that the RCM may become an effective
and efficient tool for geometric design and geometry processing by working directly in the intrinsic metric of
manifolds. Other applications, e.g., texture mapping and texture transfer, involve resolving also the inverse
problem, i.e., given a generic point, find its weights (coordinates) with respect to the given control points.
Rustamov (2010) provided a solution for this problem, which is however quite unstable if the control points
are many and distributed over a large area, as landmarks for texture transfer should be. For this reason,
more investigation is needed to find a viable solution for these applications, too.

Our current algorithm is still sensitive to the quality of the input mesh, especially for the specific
differential estimator we use. We believe that a more robust differential estimator, possibly relying on a
smooth estimate of the underlying surface, could produce results much more stable and resilient to the
quality of the underlying mesh. We plan to address such topics in our future work.

References

Absil, P.A., Mahoney, R., Press, R.S., 2008. Optimization Algorithms on Matrix Manifolds. Princeton University Press.
Adikusuma, Y., Fang, Z., He, Y., 2020. Fast Construction of Discrete Geodesic Graphs. ACM Trans. Graph, 39, 1–14.
Bose, P., Maheshwari, A., Shu, C., Wuhrer, S., 2011. A survey of geodesic paths on 3d surfaces. Computational Geometry 44,

486–498. URL: https://www.sciencedirect.com/science/article/pii/S0925772111000459.
Chen, J., Han, Y., 1990. Shortest paths on a polyhedron, in: Proceedings of the Sixth Annual Symposium on Computational

Geometry, Association for Computing Machinery, New York, NY, USA. pp. 360–369. URL: https://doi.org/10.1145/

98524.98601.
Crane, K., Livesu, M., Puppo, E., Qin, Y., 2020. A survey of algorithms for geodesic paths and distances. arXiv:2007.10430.
Crane, K., Weischedel, C., Wardetzky, M., 2013. Geodesics in heat: A new approach to computing distance based on heat

flow. ACM Trans. Graph. 32.
Farin, G., 2001. Curves and Surfaces for CAGD: A Practical Guide. 5th ed., Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.
Grove, K., Karcher, H., 1973. How to conjugate c1-close group actions. Mathematische Zeitschrift 132, 11–20.
Karcher, H., 1977. Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics

30, 509–541.
Kimmel, R., Sethian, J.A., 1998. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences

of the United States of America 95, 8431–8435.
Knöppel, F., Crane, K., Pinkall, U., Schröder, P., 2013. Globally optimal direction fields. ACM Trans. Graph. 32.
Liu, B., Tong, Y., Goes, F.D., Desbrun, M., 2016. Discrete connection and covariant derivative for vector field analysis and

design. ACM Transactions on Graphics 35, 1–17.
Mancinelli, C., Nazzaro, G., Pellacini, F., Puppo, E., 2022. b/surf: Interactive bézier splines on surfaces. IEEE Transactions

on Visualization and Computer Graphics doi:10.1109/TVCG.2022.3171179.
Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H., 1987. The discrete geodesic problem. SIAM J. Comput. 16, 647–668.
Nazzaro, G., Puppo, E., Pellacini, F., 2022. geoTangle: interactive design of geodesic tangle patterns on surfaces. ACM Trans.

Graph. 41, 12:1–12:17.
Panozzo, D., Baran, I., Diamanti, O., Sorkine-Hornung, O., 2013. Weighted averages on surfaces. ACM Trans. Graph. 32,

60:1–12.
Polthier, K., Schmies, M., 1998. Mathematical visualization, Springer. pp. 135–150.
Qin, Y., Han, X., Yu, H., Yu, Y., Zhang, J., 2016. Fast and exact discrete geodesic computation based on triangle-oriented

wavefront propagation. ACM Trans. Graph. 35, 125:1–125:13.

13

https://www.sciencedirect.com/science/article/pii/S0925772111000459
https://doi.org/10.1145/98524.98601
https://doi.org/10.1145/98524.98601
http://arxiv.org/abs/2007.10430
http://dx.doi.org/10.1109/TVCG.2022.3171179


Ramanantoanina, A., Hormann, K., 2021. New shape control tools for rational bézier curve design. Computer Aided Geometric
Design 88, 102003.

Rustamov, R.M., 2010. Barycentric coordinates on surfaces. Computer Graphics Forum 29, 1507–1516.
Sharp, N., Crane, K., 2020. You can find geodesic paths in triangle meshes by just flipping edges. ACM Trans. Graph. 39,

249:1–15.
Sharp, N., Crane, K., et al., 2019a. geometry-central. Www.geometry-central.net.
Sharp, N., Soliman, Y., Crane, K., 2019b. The vector heat method. ACM Trans. Graph. 38, 1–19.
Xin, S.Q., Wang, G.J., 2007. Efficiently determining a locally exact shortest path on polyhedral surfaces. CAD Computer

Aided Design 39, 1081–1090.
Yuksel, C., Lefebvre, S., Tarini, M., 2019. Rethinking Texture Mapping. Comp. Graph. Forum 38, 535–551.

14


	Introduction
	Related work
	The Riemannian center of mass
	RCM in the polyhedral metric
	Results
	Limitations
	Discussion

	Concluding remarks

