
geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces

GIACOMO NAZZARO, Sapienza University of Rome
ENRICO PUPPO, University of Genoa
FABIO PELLACINI, Sapienza University of Rome

Fig. 1. Models decorated with geoTangle (large images) to mimic the style of real-world artisanal objects (upper insets), together with the input meshes (lower
insets: teapot 1.5M triangles, elephant 2M triangles). We model decorations by recursively splitting a surface into progressively finer regions, to which we
apply material and displacement variations. All patterns were constructed with only four operators that split regions along the isolines or integral curves of
scalar fields derived from geodesic computations.

Tangles are complex patterns, which are often used to decorate the surface of
real-world artisanal objects. They consist of arrangements of simple shapes
organized into nested hierarchies, obtained by recursively splitting regions to
add progressively finer details. In this paper, we show that 3D digital shapes
can be decorated with tangles, by working interactively in the intrinsic
metric of the surface. Our tangles are generated by the recursive application
of only four operators, which are derived from tracing the isolines or the
integral curves of geodesics fields generated from selected seeds on the
surface. Based on this formulation, we present an interactive application
that lets designers model complex recursive patterns directly on the object
surface, without relying on parametrization. We reach interactive speed on
meshes of a few million triangles, by relying on an efficient approximate
graph-based geodesic solver.

CCS Concepts: • Computing methodologies→ Graphics systems and
interfaces; Shape modeling.

Additional Key Words and Phrases: user interfaces, geometry processing

Authors’ addresses: Giacomo Nazzaro, Sapienza University of Rome; Enrico Puppo,
University of Genoa; Fabio Pellacini, Sapienza University of Rome.

1 INTRODUCTION
Over the past twenty years, digital sculpting has been employed
extensively in the creation of 3D shapes, allowing artists to easily
design highly detailed objects with a natural look. While sculpting,
artists work seamlessly on a high-resolution model, disregarding
the underlying mesh topology or any uv-unwrapping. All the fine
details are directly embedded in the mesh, which is automatically
refined as needed during editing. From a technical standpoint, this
is made possible by keeping sculpting operations interactive on
high-resolution meshes, with a typical target size between one and
ten million triangles. In this paper, we propose a similar approach
to address the decoration of surfaces with complex patterns.
Raster decorations can be added to a surface using texture map-

ping, which involves surface unwrapping and parametrization. Raster
decorations can be painted directly on the object, while the decor is
sampled and stored in a texture. Alternatively, procedural textures
can be generated in parametric space and then mapped to the object.

1:2 • Nazzaro et al

When it comes to the creation of vector graphics on a surface,
these approaches become unwieldy. Vector primitives are specified
by control points and mathematical equations. If such primitives are
evaluated in parametric space, computations can be done in closed
form, but the result needs to be mapped through parametrization,
which involves unavoidable distortions and seams, together with
other drawbacks and limitations that we further discuss in Sec. 2.1.
On the other hand, if primitives are specified and evaluated di-

rectly on the surface, they must undergo the geodesic metric. Until
now, the latter approach was considered prohibitive due to the cost
of geodesic computations. In this paper, we advocate that producing
vector graphics directly in the intrinsic metric of the surface, and
embedding the result in the underlying mesh, can lead to an efficient
and practical solution that support interaction while removing all
drawbacks of parametrization.
While our approach to vector graphics in the geodesic metric

is fairly general, here we focus on the specific domain of tangles,
a form of decorative art, which subsumes many of the challenges
that are not addressed properly in current methods. Tangles consist
of complex arrangements of simple shapes, which are organized
into nested hierarchies, obtained by recursively splitting regions
to add progressively finer details. Due to their detailed, repetitive
and recursive nature, tangles need to be produced with the aid of
procedural methods. Besides, they must consist of exact geometries,
specified with vector graphics, since the boundaries of each element
recursively define regions to be filled with further patterns.

geoTangle. We address the interactive design of tangles on sur-
faces by presenting a general framework of subdivision and group-
ing operators that act on manifolds. Based on this framework we
implement a prototype system, called geoTangle, which supports
the interactive design of tangle patterns directly on the object’s
surface. With geoTangles, users can easily design tangles mimicking
real-world styles, shown, for example, in Fig. 1, Fig. 17, Fig. 18 and
the supplemental video.
We model tangles by the recursive applications of just four sub-

division operations, which cut regions along the isolines and the
integral curves of geodesic fields computed from appropriately se-
lected, and arbitrarily complex seeds. Our system supports user
interaction on meshes of millions of triangles thanks to methods for
fast and robust geodesic computation, which are one of the main
technical contributions of this paper.
To the best of our knowledge, there exists no other method to

interactively design tangles on surfaces. While we do not claim to
support all possible patterns, our framework is general, compact,
efficient and easily extensible without major modifications to sup-
port the design of most geometrically-defined patterns in tangle art.
Possible extensions are discussed in Sec. 6.
We validate how well geoTangle models real-world decorations

in three manners. First, we model decorations to match the styles of
real-world artisanal objects. Second, we measure the accuracy and
speed of our geodesic solver and of the overall editor to show that
we can maintain both accuracy and interactivity while modeling.
Third, we run a user study where we validate whether users can
easily produce complex patterns with our application.

Contribution. Our first main contribution comes form a frame-
work and a prototype system to create easily and interactively com-
plex structured vector patterns on the surface of 3D objects, by
working directly in the intrinsic metric of the surface. From the
point of view of interactive pattern design, this possibility is radi-
cally different from previous approaches.
Our second main contribution is a fast geodesic solver that is

interactive on meshes with millions of triangles, requires no expen-
sive pre-computation, can be updated efficiently upon mesh editing,
and is accurate enough at high triangle count. No other existing
geodesic solver exhibits all such characteristics together.

More importantly, we believe that our work demonstrates a new
perspective, which is alternative to texture mapping, for the interac-
tive design of complex patterns directly on surfaces. We believe this
work is the first that shows how complex patterns can be formalized
in the geodesic metric, also showing that interactive vector graphics
on detailed surfaces is possible.

2 RELATED WORK
We first review related works in general, next we discuss in more
detail the limitations of approaches based on parametrization, and
how we differentiate from the 2D gTangle system [Santoni and
Pellacini 2016] that inspired our work.

Digital Sculpting. In digital sculpting systems, users displace sur-
faces by applying local edits, and paint them to change the appear-
ance [Autodesk 2020; Pilgway 2019; Pixologic 2021]. Generating our
patterns using sculpting would take hours of work, even for a skilled
artist [Santoni et al. 2016]. Besides, if a pattern needs adjustments,
the entire sculpt needs to be redone, while we can just apply it with
modified parameters. The Overcoat system [Schmid et al. 2011] and
Model-Guided 3D Sketching [Xu et al. 2018] can decorate surfaces
with brush strokes, but support only raster decorations. The Polygo-
nal Patterns [Jiang et al. 2015] creates patterns directly with polygon
shapes, but lack the control needed to address different styles.

Procedural Patterns. Complex patterns might be generated with
procedural methods, for which there exists significant literature.
[Ebert et al. 2002] presents the basic methods for procedural textur-
ing, which is at the base of most pattern synthesis techniques. All
these methods require the user to describe the pattern using either
code or visual languages, and pattern generation requires evaluating
a function at each point in either 2D or 3D textures. Conversely, we
model patterns interactively.

A second class of methods generates new patterns from example
images via non-parametric texture synthesis [Sendik and Cohen-
Or 2017; Wei et al. 2009; Zhou et al. 2018]. While these methods
are remarkably reliable for unstructured patterns, they often fail to
capture complex structural properties. This is especially true for re-
cursive patterns, as discussed in [Santoni and Pellacini 2016]. [Chen
et al. 2016] addresses the problem of packing repeated decorations
on a surface, but do not provide the needed structure to produce
recursive patterns. Compared to ours, all these approaches generate
textures rather than vector graphics primitives on surfaces.

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:3

The last class of methods, and the one more closely related to our
work, is based on stochastic grammars, traditionally used for mod-
eling procedural architecture [Schwarz and Wonka 2015], which
recursively split shapes into smaller components. [Santoni and Pel-
lacini 2016] shows that group grammars can be used to describe
tangle patterns in the 2D domain, and [Carra et al. 2019] extends
their use to procedural animation. [Li et al. 2011] uses grammars
guided by vector fields to place external details on surfaces, but can-
not handle recursive patterns. An alternative approach to grammars
is to use a custom programming language to express stationary
discrete textures [Loi et al. 2017]. Our system is inspired to [Santoni
and Pellacini 2016], but it is targeted at the non-euclidean manifold
setting, and at interactive editing, instead of writing grammars or
programs. We discuss the main differences in Sec. 2.2.

Geodesics. In our work, we need a geodesic solver that: can com-
pute geodesic distance fields from multiple sources, on meshes up to
one or few million triangles, in a time compatible with interaction
(i.e., about 0.1-0.2 seconds per operation); can be updated efficiently
upon mesh editing; and is accurate enough at high triangle count.
We discuss the literature under this perspective. Broadly speaking,
there exist three classes of methods for computing geodesic distance
fields and paths. Surveys can be found in [Bose et al. 2011; Crane
et al. 2020].
Exact methods for polyhedral surfaces stem from the works of

[Mitchell et al. 1987] and [Chen and Han 1990]. Even the most recent
methods in this line [Qin et al. 2016; Ying et al. 2019] are too slow
to support interaction on moderately large meshes.

Graph-basedmethods provide approximated solutions, by restrict-
ing possible paths to chains of arcs in a graph. The sole network
of edges provides poor distance estimation and wiggly paths: sin-
gle paths can be straightened by computing shortcuts on-the-fly
[Campen et al. 2013; Sharp and Crane 2020], but the global distance
field cannot be improved efficiently. Several methods have been pro-
posed, which precompute either an extended graph adding Steiner
nodes [Lanthier et al. 1997, 2001], or a sub-graph of the complete
graph connecting all vertices [Adikusuma et al. 2020; Wang et al.
2017; Ying et al. 2013]. Generally speaking, there exist a trade-off
between the complexity of the graph and of its maintenance, and
the accuracy of the approximation. We rely on a simple graph-based
method, discussed in Sec. 4.2, which scales well to large meshes, and
can be maintained very easily and efficiently upon mesh refinement.
PDE methods define the geodesic distance problem in terms of

partial differential equations and compute approximate geodesic dis-
tances on a smoothed surface. The Fast MarchingMethod [Bronstein
et al. 2009; Kimmel and Sethian 1998] requires no pre-processing
and could be adapted well to local computations and dynamic mesh
refinement, but it is overly slow for our needs. A parallel version of
FMM [Romero Calla et al. 2019] greatly improves time performances,
yet remaining slower than our method, with a comparable accuracy.
The heat method [Crane et al. 2013] requires resolving sparse linear
systems of the size of the mesh. It runs efficiently on relatively large
meshes by exploiting pre-factorization, but it cannot be extended
easily to manage local computations, or dynamic mesh refinement.
Only the former issue can be partially addressed by incorporating
the methods proposed in [Herholz and Alexa 2018; Herholz et al.

2017a]. A very recent parallel version of the heat method [Tao et al.
2021], which does not require any pre-computation, can scale well
to large meshes, but it still remains too slow for our purposes.
In Sec. 5.2, we further compare our method to prior art, and we

provide a quantitative evaluation of its performances.

2.1 Comparison with texture mapping
In tangle generation, each target region, which contains a given
pattern, can be arbitrarily extended, complex and curved. To gain an
understanding of our typical target shapes and decorations, consider
for instance the teapot in Fig. 1, which is a replica of a real piece of
pottery. Each leg of the teapot, as well as its main body, is considered
as a single piece to be filled with a pattern that covers it uniformly
and seamlessly.
Procedural textures cannot be used, since they do not induce a

subdivision of the object, which is needed to create further patterns
recursively. Vector tangles could be generated procedurally in para-
metric space, and then mapped to the target object via parametriza-
tion. In the latter case, any editing is indirect, hence unnatural and
hard to control: the artist edits the decor in parametric space while
checking the outcome in object space.

Besides the unwieldy user interface, unwrapping and parametriza-
tion must cope with two limitations. From a topological standpoint,
the unwrapped surface must have the topology of a punctured disc.
Any surface with a different topology needs to be cut open to be
unwrapped, by introducing seams. From a metrics standpoint, any
parametrization will induce some distortion. Further seams can help
to reduce distortion, but this is a typical no-free-lunch problem [Li
et al. 2018; Poranne et al. 2017].

Distortion alters the appearance of vector primitives once they are
mapped to the target surface, making them hard to control. Seams
hinder the creation of primitives that go across them or make them
discontinuous. Several methods have been proposed to alleviate the
effect of seams. Seamless parametrization methods [Campen et al.
2020; Levi 2021] enforce the parametrization to be smooth across
seams. However, this constrains further the already difficult task of
defining a usable parametrization for a given surface, and increases
distortion, concentrating it around “cones”. Also, this does not solve
the problem entirely, as 2D primitives must still be disallowed to
cover a cone. More general techniques that try to achieve inter-chart
continuity lead to fairly complicated solutions [Prada et al. 2018].
In Fig. 2, we show the effect of performing straight mapping of

simple patterns through parametrization, either with or without
seams. Our method, which builds patterns directly on the surface
by generating geodesic fields on the fly, could be seen as a way
to obtain locally a proper parametrization for the pattern at hand,
without the limitations of seams and distortion.

2.2 Comparison with gTangle
Our work is inspired by gTangle [Santoni and Pellacini 2016], which
showed that 2D tangles can be modeled using stochastic grammars,
where a few operators are applied recursively to obtain complex
patterns. Similarly to them, we define our algebra of tangles as the
recursive combination of few subdivision and grouping operators.

1:4 • Nazzaro et al

ARAP with seamsBFF with seamsOur approach BFF without seams ARAP without seams Texture

Fig. 2. Comparison with parametrization. Polka dots and stripe patterns can be applied to surfaces by tiling textures in the parametric domain. Here we show
parametrization with and without seams generated with BFF [Sawhney and Crane 2017] and ARAP [Liu et al. 2008]. A parametrization with seams introduces
discontinuities in the pattern that become visible on the shape, while a parametrization without seams causes strong distortions. The same patterns obtained
with our method shows no such artifacts since we work directly in the geodesic metric.

ARAP with seamsBFF with seamsOur approach BFF without seams ARAP without seams

Fig. 3. Comparison with gTangle. Patterns generated in the parametric domain for a complex patch with operators equivalent to gTangle, parametrized with
and without seams, exhibit either artifacts close to the seams, or large distortions. When parametrizing without seam, the introduced distortions are too
relevant to properly reproduce the gTangle pattern on the surface. When parametrizing with seam, the gTangle pattern is necessarily altered since the shape of
the domain has changed (see the missing dots in the red example, and the additional stripe in the black-and-white example). Our method provides always
correct results since it computes the pattern directly in the intrinsic metric of the surface providing a correct result.

However, there are two fundamental differences between gTangle
and our approach.
First, gTangle is an inherently 2D method, which cannot be ex-

tended directly to the geodesic metric. Fig. 3 shows a comparison of
our method with patterns generated with operators equivalent to
gTangle’s ones and applied to the surface via parametrization. Pat-
terns generated with gTangle are properly defined in the 2D domain,
but, when applied to surfaces via parametrizations, they show the
same discontinuities and strong distorsions that we have previously
discussed. These artifacts derive from the fact that our operators are
defined directly in the geodesic metric, while gTangle’s operators
are defined in the Euclidean 2D metric.
Second, gTangle patterns are hard to design since users have to

write a formal grammar. While the authors demonstrate a simple
user interface, this is just used to pick from a set of manually edited

grammars. Writing grammars is notoriously complex, even when
using visual programming languages, like node graphs. Program
parameters may be found by optimization [Shi et al. 2020], but edit-
ing the procedural program itself is still not possible automatically.
Our system has the entirely different focus of designing patterns via
user interaction and fully supports selection, grouping, and joining
operators.

3 DRAWING TANGLES ON SURFACES
In geoTangle, patterns are generated by recursively applying a small
set of operators to regions of a manifold. Tangles are defined as
hierarchies of regions, and operators take as input a tangle, as well
as a set of parameters, and produce a modified tangle consisting of
refined regions. Fig. 4 shows an example of a pattern generation
sequence in geoTangle.

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:5

Fig. 4. Complex recursive patterns are obtained in just eleven steps (left
to right, top to bottom) starting at a base shape (upper left). At each step,
we apply a basic operation, which recursively splits the surface into finer
decorations. The generated patterns naturally follow the shape of the surface,
as they are based on geodesic distance fields.

In Appendix A, we formally define an algebra of tangles over a
manifoldM, upon which our formulation is built. Informally, the
algebra is summarized as follows. (1) The atomic elements of the
algebra are regions ofM; a tangle T is a tree of nested regions;
the leaves of T form a partition of M and are ultimately used
to draw the pattern. (2) Subdivision operators modify a tangle T
by partitioning selected regions; subdivision operators are specific
and characterize the different patterns that can be generated. (3)
Grouping and joining operators permit to treat groups of regions
as unique regions to ease editing operations; such operators are
generic and defined once for the algebra.

While the algebra is intentionally general and extensible, geoTan-
gle is based on a small set of specific subdivision operators. Our
purpose here is to demonstrate that a large variety of patterns can be
generated on the basis of such operators, while leaving the system
open to further extensions.

The main challenge in lifting tangle patterns to the manifold set-
ting is that the 2D Euclidean domain and its global reference system
altogether are lost. In order to support the necessary computations,
we need to design our operators upon local, relative reference sys-
tems that are suitable for the pattern at hand. Our choice is to rely on
patterns that can be defined in terms of distances and directions. We
thus review the most common patterns adopted in tangle art in 2D,
showing that the underlying geometric concepts can be formalized
in that way. Based on such observations, we devise our operators
for the manifold setting.

Fig. 5. Examples of typical patterns used in 2D tangles. From the left: outline,
hatch, grid, polka dots, Voronoi, radial.

3.1 2D patterns revisited
A pattern in the 2D plane is defined with an arrangement of lines
that partition a region 𝑟 . We assume lines to come from the common
arsenal of 2D vector graphics: polylines and scribbles, arcs of circles
and ellipses, and splines. Patterns can be either absolute, i.e., defined
with respect to the embedding plane, and clipped to the region of
interest 𝑟 , or relative to the region 𝑟 . In the latter case, the boundaries
of 𝑟 play some relevant role in the definition of the pattern. We list
here a few common examples that are also depicted in Fig. 5.
Outlines provide a typical example of relative patterns. Frames

consisting of offset copies of the boundary are drawn towards the
interior of the region. The amount of offset and the number of frames
define the arrangement. Note that the result consists of contour lines
of the distance from the boundary.

Hatches are defined by providing a reference line and a displace-
ment direction. Copies of the reference line are displaced for a given
offset in the given direction. The pattern is either relative or absolute,
depending on whether the reference line belongs to the boundary
of 𝑟 or not. Again, offset lines are contour lines of the distance from
the reference line.
Grids are obtained by the repeated application of hatches along

different reference lines. Using two nearly orthogonal directions
defines a quadrangular grid, which may also provide a scaffold to
place repeated copies of isolated shapes arranged in a regular lattice.
Note also that each cell from hatching or grid implicitly defines a
local coordinate frame, which can be used to define further distance-
based patterns within it.

Shape placements consist of multiple copies of a base shape, placed
inside a region 𝑟 with a prescribed density. Typical shapes are
roughly approximated with their minimal enclosing circles, which
are virtually placed with some stochastic process, such as Poisson
sampling. Then the basic shape is drawn inside each circle, with
either a prescribed or a random orientation. Polar coordinates with
respect to the enclosing circle may provide a local frame to draw
the shape, which is again purely distance-based. Polka dots are the
simplest form of placement. Voronoi patterns are a special instance
of placement: in this case, just seed points are placed inside 𝑟 with
a sampling process, then the pattern is defined by their Voronoi
diagram, which is again defined upon distance.
Radial patterns consist of lines (or placements of basic shapes

along them) emanating from a focal point or shape. The density
of lines about the focal shape defines the pattern. In this case, the
pattern can be formalized as made of integral curves of the gradient
of distance from the focal shape.
While the above list is certainly not exhaustive, most geometric

patterns can be obtained with combination and generalization of
such patterns. See for instance Fig. 13 for examples of a few macros

1:6 • Nazzaro et al

di
st

bl
en
d

Fig. 6. Field visualization: dist field from the center and blend field from the
center to outer border.

included in our system, and Fig. 9 for more complex examples in-
volving scaffolds. Some relevant classes of patterns that we do not
address in our work are discussed in Sec. 6.

3.2 Lifting to the manifold setting
Straight-line segments and circles admit straightforward extensions
to the geodesic metric as geodesic lines and geodesic circles (i.e.,
contour lines of the distance from a point), respectively. In geoTangle,
we stick to such lines, and their generalizations that will be described
in the following. In Sec. 6, we discuss how the system could be
extended to include splines and ellipses, too.

Our subdivision operators trace lines that are either contour lines
of a scalar field 𝑓 defined overM, or integral curves of its gradient
∇𝑓 . We define our scalar fields upon geodesic distances, depending
on both the manifoldM, and a seed set made of points and lines
onM from which distances are computed. Much flexibility of our
operators stems from the possibility to set seeds in a proper way.
We consider two types of scalar fields, shown in Fig. 6: the geo-

desic distance 𝑑𝑖𝑠𝑡𝐴 (𝑥) of surface point 𝑥 from a seed set 𝐴, and the
blend between geodesic distance fields from two independent seed
sets, defined as

𝑏𝑙𝑒𝑛𝑑𝐴,𝐵 (𝑥) =
𝑑𝑖𝑠𝑡𝐴 (𝑥)

𝑑𝑖𝑠𝑡𝐴 (𝑥) + 𝑑𝑖𝑠𝑡𝐵 (𝑥)
.

The blend field, already used in [Campen and Kobbelt 2011] to
derive parametrizations, has some nice properties: its values are in
the range [0, 1], where 𝑏𝑙𝑒𝑛𝑑𝐴,𝐵 (𝐴) = 0 and 𝑏𝑙𝑒𝑛𝑑𝐴,𝐵 (𝐵) = 1; and it
is anti-symmetric in the sense that 𝑏𝑙𝑒𝑛𝑑𝐴,𝐵 (𝑥) = 1 − 𝑏𝑙𝑒𝑛𝑑𝐵,𝐴 (𝑥) .
Moreover, if 𝐴 and 𝐵 are lines, its contour lines are parallel to both
of them in their vicinity, and the integral curves of its gradient meet
them orthogonally.

Note that, the simple case of geodesic lines and circles corresponds
to integral curves and contour lines, respectively, of the field 𝑑𝑖𝑠𝑡𝑥
from a source point 𝑥 . Allowing for the computation of distance
fields from a source set 𝐴 different from a single point, and to blend
fields, greatly extends the patterns that we can obtain.

3.3 The subdivision operators of geoTangle
We define just four operators, which are exemplified in Fig. 7. Our
operators are not direct translations of the 2D patterns listed in
Sec. 3.1; rather, their combinations with proper parameters encom-
pass such patterns.

Contour operator. The contour operator traces the contour lines
of the geodesic field. It is defined as

(T , 𝑟)
Contour (𝐴, [𝐵],𝛿,𝑘)

↦→ T ′

where𝐴 is the seed set; 𝐵 is an optional secondary seed set and either
the blend𝐴,𝐵 or the dist𝐴 function is used depending on whether or
not 𝐵 is specified; 𝛿 is an offset for the isovalues to be sampled; and
𝑘 is the number of contours to trace. The operator computes the
proper distance field from the seed set(s) provided, then it traces 𝑘
contour lines of such fields at multiples of 𝛿 and embeds such lines
in the underlying mesh representingM.

Depending on the selected parameters, this operator can be used
to construct a variety of patterns, including contours, polka dots,
hatching, and grids (see Fig. 7 top row). The contour operator has
been used to obtain most of the decorations on the teapot in Fig. 1.

Stream operator. The stream operator cuts regions by tracing the
integral curves of the gradient of the geodesic field. It is defined as

(T , 𝑟)
Stream(𝐴, [𝐵],𝛿)

↦→ T ′

where 𝐴 and 𝐵 are the seed sets, each of which must be a line or
loop, and the field used is defined as in the previous operator; 𝛿 is an
offset for sampling 𝐴. The operator computes the proper distance
field from the seed set(s), then it samples points along 𝐴 uniformly
at distances 𝛿 and, for each sampled point 𝑝 , it traces the integral
curve of the field gradient, starting at 𝑝 until reaching 𝐵 or the
boundary of 𝑟 . As before, the traced lines are embedded inM.
The stream operator supports various forms of radial patterns.

When applied between the base rings of a cylindrical region it
produces longitudinal hatchings and it can be used in combination
with the contour operator to produce a grid (see Fig. 13). The stream
operator has been used to obtain the main pattern of the rug on
the back of the elephant in Fig. 1, as well as in several parts of the
rolling teapot in Fig. 17.

Voronoi operator. The voronoi operator partitions a region into
the cells of a Voronoi diagram in the geodesic metric. It is defined as

(T , 𝑟)
Voronoi (𝐴)
↦→ T ′

where𝐴 is a set of points sampled inside region 𝑟 . The user controls
the seeds in the region, which can be either manually selected,
or generated with Poisson sampling, as described in Sec. 4.2, to
simulate the look of centroidal Voronoi tessellation. We rely on
Poisson sampling rather than the CVD to achieve interactivity. We
use the Voronoi operator to obtain cellular-like patterns or as a
drawing scaffold to place finer details. See examples in Fig. 12, as
well as on the fertility in Fig. 17.

Polyline operator. Finally, the polyline operator draws a single
geodesic polyline on the surface. It is defined as

(T , 𝑟)
Polyline (𝐴)
↦→ T ′

where 𝐴 is a sequence of seed points that lie inside or on the bound-
ary of region 𝑟 . If the polyline forms a closed loop or it connects two
points from the same boundary loop, then region 𝑟 is split into two
sub-regions; otherwise, it is embedded into the region’s boundary.

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:7

co
nt
ou
r

st
re
am

vo
ro
no
i

po
ly
lin

e

Fig. 7. Example decorations created by applying operators with different fields and seed sets. (Top, left to right) Contour operator with (1) dist field from
the inner boundary (in blue) cutting along a single isovalue; and (2) cutting along multiple isovalues; (3) blend field between inner (blue) and outer (orange)
boundary, cutting along multiple isovalues; (4) dist field from Poisson sampling of points on the surface; (5) blend field between left (yellow) and right (blue)
boundaries with multiple isovalues; (6) blend field between lower (yellow) and upper (blue) boundaries on the same region, already refined with (5). (Bottom
left, left to right) Stream operator with (7) dist field from inner boundary; (8) blend field between inner and outer boundary. (Bottom middle, left to right)
Voronoi operator with (9) dist field from points selected with Poisson sampling; and (10) from manually selected points. (Bottom right, left to right) Polyline
operator with (11) closed polyline on a multiply connected region; (12) open polyline connecting two points on the same boundary loop.

st
ar

tin
g

do
ts

 o
n

le
av

es

do
ts

 o
n

pa
re

nt

Fig. 8. (Left) The body of the vase has been partitioned into stripes with a
contour operator. (Middle) A Polka dots pattern is obtained with a contour
operator applied to Poisson point sampling in each stripe region separately.
(Right) The same pattern is applied on the parent region of the stripes, which
is the body of the vase; in this case, the whole surface between the red strips
is considered as a single piece for point sampling, distance computation
and region splitting.

For instance, two lines connecting different boundaries of a cylin-
drical region can be used to cut a longitudinal strip, e.g., as on the
spout of the teapot in Fig. 1.

The polyline operator is most often used to cut large, meaningful
patches to be further refined and decorated, or to provide a scaffold
for the application of other operators.

3.4 Applying Operators
Seed selection. In our prototype, the user can select region bound-

aries, either completely or partially, as well as points on the surface.
A seed set is made of an arbitrary collection of such selections.
Points can be either selected individually, or sampled according to
a Poisson distribution in the geodesic metric. Significantly different
patterns stem from different selections as already shown in Fig. 7.

Grouping and hierarchy. Combining group tagging and the pos-
sibility to apply operators to internal nodes of the tree allows us

st
ar

tin
g

gr
id

do
ts

 o
n

bl
ac

k
ce

lls

jo
in

 g
ri

d
ce

lls

Fig. 9. The initial grid (left) is used as a scaffold to sample seeds in the dark
regions (middle), while the final decor consists just of the polka dots (right).

no
 p

er
tu

rb
at

io
n

fie
ld

 p
er

tu
rb

at
io

n

gr
ap

h
pe

rt
ur

ba
tio

n

Fig. 10. The same pattern is generated without perturbation, with perturba-
tion of the scalar field and with perturbation applied to the surface before
geodesic field computation. Note how perturbing the surface instead of the
resulting geodesic field preserves the topology of the generated regions, e.g.,
the connected components.

to easily obtain different patterns and assign colors and materials.
See examples in Fig. 8 and Fig. 13 (grid). This operation is natural
in our framework, since field computation and split operators are
independent. This same scenario required specialized operations
in the group grammars presented in [Santoni and Pellacini 2016].
This extension also implies that we are less sensitive to the order in

1:8 • Nazzaro et al
st
ar
tin

g

di
sp
la
ce
m
en
t

co
nt
ou
r

Fig. 11. Example pattern generated applying strong surface displacement
using different profiles to create bulges and horn-like structures. Note how
we can coherently edit the horns with additional decorations since distance
fields are computed on the updated geometry.

Fig. 12. Left: The application of the first operators is used to create stripes
and grids, that are used as structures to apply further operators and create
higher-order patterns. Center: Result obtained with application of three
macros: outline on the whole surface, cells on the two resulting regions, and
outline again on all cells, which are then displaced. Right: Complex patterns
composed of many regions, which are colored following the parity of their
group tag.

which operations are applied, a common concern in split grammars
[Schwarz and Wonka 2015], thus leaving more freedom to the user.

Scaffolds. A scaffold is a dummy pattern encoded in the tangle
tree, which partitions a region without producing any change of
appearance, namely the internal boundaries of this pattern are just
virtual and the pattern behaves as a single region. A scaffold is
used as a base structure to produce further patterns, e.g., as in the
examples shown in Fig. 9 and Fig. 12.

Perturbation and displacement. To obtain a more “handcrafted”,
organic look, the user can perturb geodesic fields to simulate the im-
precision of artists’ hands, as shown in Fig. 10.We do so by offsetting
the vertices of the mesh along their normals, using 3D Perlin noise,
before computing geodesic distances. This perturbation is used only
by the geodesic solver, while the actual mesh is not changed. Geo-
desic distances computed on such warped geometry are therefore
transformed accordingly to a coherent metric and produce irregular
shapes, providing organic results. This works significantly better
than perturbing the scalar field directly, since the latter can cause
unwanted topological changes to the perturbed regions due to the
fact that the perturbed field is no longer a distance field. Pertur-
bation can be controlled by setting the gain and frequency of the
Perlin noise. For instance, all the irregular blobs on the body of the

→ →→

→ →→

grid outline lace cells

sunburst polka dots frames flower

Fig. 13. Example decoration created by applying four macros successively.
(First row, left to right): Example decoration applying four macros suc-
cessively. (1) The sunburst macro creates longitudinal stripes or wedges
connecting the two borders of a cylindrical region, by applying the stream
operator and the two boundaries as seed sets. (2) The polka dots macro, in
the blue region, creates dots by applying the contour operator to a set of
Poisson-sampled seed points from the selected region. (3) The frames macro
generates concentric outlines by applying the contour operator recursively
to the boundary of the selected region, that in this case is the white one.
(4) The flower macro creates flowing decorations by applying the contour
operator to the blend between the distance from the region boundaries
and the distance from Poisson-sampled points. (Second row from the left)
Example decoration created by applying four macros successively. (5) The
grid macro generates checkerboards by recursively applying the contour and
stream operators between the opposite boundaries of a cylindrical region.
(6) The outline macro creates outlines by applying the contour operator
to all the boundaries of the selected boundaries. (7) The lace macro cre-
ate embroidery-like decorations by applying the contour operator to seed
points uniformly sampled from the boundaries of the selected region. (8)
The cells macro creates cellular patterns by applying the Voronoi operator
to Poisson-sampled seed points.

teapot in Fig. 1 are actually circles from a perturbed metric; likewise,
the irregular stripe patterns on the spherical bodies forming the lid
of the same teapot is obtained with perturbation.
Finally, we allow the user to apply arbitrarily-large surface dis-

placement, after each operator is applied. The displacement is pro-
portional to the geodesic distance from the region boundaries, being
null at the boundaries to avoid discontinuities. Its profile is con-
trolled by applying gain and bias operators from [Schlick 1994],
to create bumps, pits, ridges or spikes. This feature has been used
extensively in most of our results, see Figures 1, 12 and 17.

Macros. Overall we found that by combining selection, opera-
tors and hierarchy we can create very complex patterns with ease.
We also found that some specific combinations of operators and

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:9

Fig. 14. We implemented an application for real-time editing that let the user
decorate an input model applying the operators described in Sec. 3.3 directly.
The user interface also features utilities for all the operations described in
Sec. 3.4, such as surface displacement, perturbation and macros.

seed sets were often chosen together to create distinctive and rec-
ognizable patterns. To reduce manual work, we bundle these con-
figurations into “macros”, in a manner similar to 3D editors. In our
application, each macro is represented with just a button in the inter-
face. Fig. 13 shows two simple sequences of editing using the eight
macros we found most useful. See figure caption for a description.

User interface. To create and edit surface tangles, we have im-
plemented a user interface that presents to the user the selection
methods and split operators exactly as described previously. Fig. 14
shows the user interface that is also demonstrated in the supple-
mental video. To further simplify editing, we support hierarchy tree
navigation and undo. We have used this interface to generate all
results in this paper.

4 IMPLEMENTATION
In the discrete setting, we encode the manifoldM as a finely tes-
sellated triangle mesh 𝑀 . We refine the mesh after applying each
operator to precisely embed region boundaries as chains of edges,
allowing us to represent regions exactly as groups of triangles. Since
we target design applications, we support real-time interaction on
commodity hardware on meshes up to a few million triangles.
Our formulation relies on geodesic distance fields, which are

notoriously expensive to compute, especially for large meshes. We
use a simple graph-based geodesic solver that is efficient, scalable,
accurate enough at our tessellation level, and easy to update as the
mesh is refined and displaced. We achieve efficiency and scalability
by encoding the mesh and the graph with compact and tightly
coupled data structures. This data-oriented design has other benefits
since it easily supports undo, serialization and rendering. We will
not discuss these aspects in this paper, though.
In the remainder of this section, we discuss implementation de-

tails to aid in reproducibility. We will also release an open-source
implementation upon paper acceptance.

A B C D

Fig. 15. (A) Our graph has one node for each vertex in the mesh (black dots),
a bidirectional arc for each edge in the mesh (black lines) and for each pair
of vertices that are opposite to an edge (red lines). The weight of each arc is
equal to the geodesic distance between the connected vertices. (B) When
an operator is applied, the surface is partitioned into new regions (blue and
grey). The boundary that separates the new regions is a polyline crossing
the edges of the triangles in the mesh. (C) The mesh is refined to embed
the polyline, so that each triangle belongs to one region. (D) Only arcs in
the graph traversing the split triangles are updated.

4.1 Representation
Mesh data structure. We encode triangle meshes with an indexed

data structure augmented with face adjacencies, a.k.a. winged data
structure [Paoluzzi et al. 1993], compactly stored in three arrays: po-
sitions (float[3]), triangles (int[3]), and face adjacencies (int[3]).
The indexed format provides a minimal representation of geometry
and connectivity, while adjacencies provide support for efficient
line tracing, region flooding and boundary computation. We have
preferred this simple triangle-based data structure over more gen-
eral and popular edge-based data structures, such as the half-edge
[Weiler 1985], just because it is more compact and easier to update
upon mesh editing, yet sufficient for our needs.

Pattern representation. We explicitly encode the tree of patterns
T , as described in Appendix A, which maintains the hierarchy as
well as the tags of all regions. The overhead of this data structure is
negligible, as it contains at most few thousands nodes even on our
most complex results, as shown in Fig. 1.
We embed all boundaries of regions in the underlying mesh, by

cutting it each time an operator is applied. This is very convenient,
because we can store the boundaries of each region 𝑟𝑖 ∈ T as chains
of edges. Also, each region is represented exactly as a collection of
triangles of𝑀 : we thus label each triangle with the region identifier
of the region containing it.
Compared to storing a hierarchy of meshes, this representation

is both significantly more compact and does not need to be updated
as the mesh is refined. It also supports efficiently editing operations
such as serialization, undos, etc.

Field representation. Scalar fields are encoded at mesh vertices
and extended by linear interpolation, while their gradient field is
piecewise-constant on triangles. Operators compute either contour
lines or integral curves, including geodesic paths, which cut the
mesh along polylines. We split all triangles intersected by such
polylines every time an operator is applied.

4.2 Geodesic Computations
Geodesic Graph. Our solver is implemented using the graph ex-

emplified in Fig. 15. Nodes correspond to mesh vertices, while arcs
correspond to mesh edges as well as dual edges, i.e., arcs connect-
ing pairs of vertices opposite to an edge. The length of each arc

1:10 • Nazzaro et al

ALGORITHM 1: Visit of geodesic graph (visit_graph)
Input: Graph𝐺 , Sources 𝑆 , Initial geodesic distance field 𝐷 ,

Distance threshold 𝑟
Output: Updated geodesic distance field 𝐷
Q ← 𝑆 // initialize node queue
w← 0 // total weight of the queue
while Q ≠ ∅ do

// LLL heuristic: pick the first node with
// weight less than the queue average
node← pop_front(Q)

while 𝐷 [node] > w
|Q | do

push_back(Q , node)
node← pop_front(Q)

w← w −𝐷 [node]
// check for early exit
if 𝐷 [node] > 𝑟 then continue
// visit neighbors to propagate distances
foreach neighbor, length ∈ 𝐺 [node] do

𝑑𝑜𝑙𝑑 ← 𝐷 [neighbor]
𝑑𝑛𝑒𝑤 ← 𝐷 [node] + length
if 𝑑𝑛𝑒𝑤 ≥ 𝑑𝑜𝑙𝑑 then continue
if neighbor ∈ Q then

// node already in queue, update total weight
w← w − 𝑑𝑜𝑙𝑑 + 𝑑𝑛𝑒𝑤

else
// add neighbor to queue with SLF heuristic
if 𝑑𝑛𝑒𝑤 < 𝐷 [front(Q)] then

push_front(Q , neighbor)
else

push_back (Q , neighbor)
w← w + 𝑑𝑛𝑒𝑤

𝐷 [neighbor] ← 𝑑𝑛𝑒𝑤 // propagate distance

return 𝐷

is computed as the exact polyhedral distance between the vertices
it connects. Arc lengths are stored in single precision to reduce
memory usage, as our method is not prone to high error propaga-
tion – distances are just summed during graph visit – while most
approximation error stems from discretizing geodesic paths along
arcs of the graph.

We store the graph as adjacency lists with a simple array of arrays
data structure, where we employ small vector optimizations for the
adjacency lists. This solution ensures that most of the graph is laid
out on a single contiguous chunk of memory, which reduces heap
pressure and improves cache locality during the graph visit.
We build the graph once at the beginning of the editing session,

by using face adjacencies to construct dual edges. Then we locally
update the graph after each mesh refinement operation: updates
only involve nodes incident at split triangles, which are retrieved
easily and efficiently, thanks to the implicit connection between
vertices and nodes, and edges, adjacencies and arcs. Updates upon
displacement are also efficient since they only require recomputing
edge lengths, without modifying the graph topology.

ALGORITHM 2: Poisson sampling
Input: Graph𝐺 , Selected region id 𝑅, Minimum distance between

samples 𝑟 , Max number of samples 𝑁
Output: Set of sampled vertex ids 𝑆
begin

𝑆 ← ∅
B← boundary_vertices(R)
𝐷 ← init_field(R, B) // init field to confine visit to region
if B ≠ ∅ then

// offset sampled points away from the boundary
𝐷 ← visit_graph(𝐺,B, 𝐷, +∞)
foreach d ∈ 𝐷 do d ← d + 𝑟/2

while true do
v← argmax(D) // choose new sample
if 𝐷 [v] < 𝑟 then break
𝑆 ← 𝑆 ∪ {v} // add new sample to result
if |𝑆 | = 𝑁 then break
// update distance field with new sample
𝐷 [v] ← 0
𝐷 ← visit_graph(𝐺, {v}, 𝐷, +∞)

return S

Geodesic Solve. We compute geodesic distance fields by wavefront
expansion over the graph, shown as pseudocode in Algorithm 1. We
adopt the small-label-first (SLF) and large-label-last (LLL) as search
heuristics [Bertsekas 1998]. Although the worst case time com-
plexity of such techniques is suboptimal, on mesh-like graphs they
perform significantly faster than a standard propagation method,
like a Dijkstra search or the FMM [Wang et al. 2017]. A Dijkstra-
like search visits the same node as few times as possible, but it
requires a priority queue, which is slower to maintain than the sim-
ple double-ended queue used with the SLF and LLL heuristics. We
implement this queue efficiently with a circular buffer, which can be
accessed and updated with almost the same speed as a plain array.
This has a dramatic impact on practical performance, as we show
by comparing the two algorithms in Table 2.
Note also that, differently from Dijkstra search, our algorithm

lends itself to parallelization, e.g., by using a double-ended queue
with concurrent access [Graichen et al. 2016]. Such an extension is
beyond the scope of this paper, but it might improve the performance
of our system to work on even larger meshes.
Our implementation aggressively exploits computation locality,

by applying early exits when bounding the graph search to a region.
To limit the geodesic computation to a portion of the surface, before
the visit, we set the initial distance field to an infinite value only in
the area of interest, and set it to zero everywhere else and in the
source vertices. The solver computes distance fields from any given
set of source vertices, while lines are just sampled at their vertices.
Note that we use our solver just to compute the geodesic distance,
while we do not trace geodesic paths with sequences of arcs in the
graph, as the latter would result in wiggly polylines.

Poisson sampling. Weuse Poisson sampling, shown as pseudocode
in Algorithm 2, to generate seed sets for various operators. We adopt
a farthest point sampling technique [Eldar et al. 1997] under the

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:11

ALGORITHM 3: Voronoi field generation
Input: Graph𝐺 , Selected region id 𝑅, Set of seed vertex ids 𝑆
Output: Array of triples of closest generators 𝐼 , Array of generator

distances 𝐻
begin

𝐻 [:] ← (+∞, +∞, +∞) // clear all entries
𝐼 [:] ← (−1,−1,−1) // clear all entries
𝐷 ← init_field(R, S) // confine visit to 𝑅 from 𝑆

𝐷 ← visit_graph(𝐺, 𝑆, 𝐷, +∞) // distance field from 𝑆

𝑟 ← max(D) // bound visit to small distance
// find distance for each generator
foreach 𝑠 ∈ 𝑆 do

𝐷 ← init_field(𝑅, {𝑠 }) // confine visit to 𝑅 from 𝑠

𝐷 ← visit_graph(𝐺, {𝑠 }, 𝐷, 𝑟) // distances from 𝑠

// find three closest generators and their distance
foreach 𝑣 ∈ 𝑅 do update 𝐼 [𝑣] and 𝐻 [𝑣]

return 𝐼 , 𝐻

Poisson Sampling

tim
e

(s
ec

)

0

0,2

0,4

0,6

0,8

number of samples

0 75 150 225 300

Voronoi

tim
e

(s
ec

)

0

0,1

0,2

0,3

0,4

number of generators

0 35 70 105 140

Fig. 16. Computation time for Poisson point sampling and Voronoi on the
elephant model (2M triangle) as the number of samples increases. By ex-
ploiting the locality of the graph-based distance computation, we drastically
reduce the time complexity.

geodesic metric. This scheme requires computing a distance field for
each sampling point, which becomes too expensive for interaction
with more than a few samples. We take advantage of the wavefront
nature of graph search to significantly reduce the computation time.

We begin by computing the distance field from the region bound-
ary. Then we iteratively select the vertex with maximum distance
and add it to the seed set. We update the same distance field by ex-
panding from the new seed, without resetting the already computed
distances. This makes sure that each new visit expands only in the
proximity of the new seed, since it stops when hitting nodes with a
smaller distance from the previous set. Each new sample is increas-
ingly cheaper to compute, resulting in a sub-linear time complexity,
as shown in Fig. 16. After a certain number of samples, computation
time increases linearly but very slowly, becoming dominated by
the cost of computing 𝑎𝑟𝑔𝑚𝑎𝑥 in the distance field array. This is
another advantage of a graph-based solver over alternatives that
are non-local.

Voronoi. Generating a Voronoi diagram requires the computation
of a distance field for each element in the seed set, which is too
expensive. Again, we speed up this operation by exploiting early
exits in graph search. As shown in Algorithm 3, we first compute the
distance field from all seeds together to find its maximum value. We

then set this distance as bound for early exit when computing the
field for each seed. Intuitively, this ensures that each mesh vertex is
visited roughly twice, so computation time is roughly equal to twice
the cost of a full visit, regardless of the number of seeds. Fig. 16
shows that the increase in time is about linear, but the slope is very
small: note that with 130 generators the time is about only 3 times
the cost for a complete solve from a single source.
For each vertex of the region of interest, we collect the distance

from its three closest seeds and we generate the Voronoi diagram
by splitting all triangles that have vertices lying in different Voronoi
regions, as in [Herholz et al. 2017b].

Line tracing. Operators require extracting contour lines and inte-
gral curves, as well as cutting themeshwith such lines. Contour lines
are extracted per triangle by linear interpolation. Integral curves
and geodesic paths are computed by tracing the piecewise-constant
gradient per triangle. Each triangle intersected by one such line is
split along the corresponding segment, forming three new triangles.
When a triangle is split, arcs and nodes are added to the graph to
represent new vertices and edges, and the adjacency of nodes in the
split triangle is updated accordingly, as shown in Fig. 15.

Operators. The operators described in Sec. 3 are implemented
on top of the functionality described before. The contour operator
requires one or two geodesic solves, for 𝑑𝑖𝑠𝑡 and 𝑏𝑙𝑒𝑛𝑑 respectively,
followed by the extraction of isolines and cuts along them. The
stream operator requires the same solves, this time followed by cuts
along integral curves. In both cases, computation is bound to the
region in which the operator is applied. The polyline operator is im-
plemented by tracing geodesic paths between each pair of successive
points. Each segment is computed starting at a vertex and ascending
the gradient of the distance field generated from the previous vertex.
This operation requires one solve per segment: early exit occurs as
soon as the target vertex is reached, so the computation is bound to
the intersection between the selected region and a geodesic circle
having the segment as radius. Finally, shape perturbation and dis-
placement are trivially implemented by updating the edge lengths
in the graph, and the positions of vertices, respectively.

Discussion. Our system is compact and coherent, because all op-
erations rely on geodesic distance computation, as well as on few
other straightforward operations, namely line tracing and mesh
cutting. Our choices were motivated by the constraints inherent to
interactive editing of large meshes: time efficiency, scalability, and
ease of update upon mesh modifications.

We experimented with several other geodesic solvers in the liter-
ature, but our specific graph solver provides an optimal trade-off
under a variety of aspects, such as accuracy, speed, scalability, sim-
plicity, dynamic update, and early exits. The graph already provides
a compact “precomputed” structure that can be quickly updated. On
the contrary, computation of a geodesic field from a given source in
general provides no hint on computation of the field from a different
source. Scalability, simplicity and ease of update descend from using
just the vertices of the mesh as nodes, and relations from local mesh
topology as arcs. Nodes in our graph have an average degree of 12,
hence for a mesh with 𝑁 vertices our graph has 𝑁 nodes and about
6𝑁 bidirectional arcs.

1:12 • Nazzaro et al

In contrast, graph-based methods using Steiner nodes [Lanthier
et al. 1997, 2001] are much more complex to maintain upon dynamic
updates, and have a larger memory footprint. Their number of arcs
increases quadratically with the number 𝑘 of Steiner nodes per edge:
for 𝑘 = 3 there are ∼10𝑁 nodes and ∼84𝑁 arcs, making these graphs
impractical for large meshes even with moderately low values of 𝑘 .
The DGG [Adikusuma et al. 2020; Wang et al. 2017] and SVG

[Ying et al. 2013] methods use graphs that do have just the vertices
as nodes, but each node has a high degree (order 102 − 103). Their
memory footprint is high and they are slow to update upon mesh
refinement. Finally, the methods proposed in [Campen et al. 2013;
Sharp and Crane 2020] rely just on the graph of edges, but computa-
tions to straighten paths are done on the fly, making them suitable
for point-to-point path computation only.
With the PDE method of [Crane et al. 2013], each solve implies

the solution of a sparse 𝑁 × 𝑁 linear system, which can be pre-
factorized for a given mesh, making the solution fast at the price
of pre-computation. The main concern in using this method is that
every time we change the mesh topology or geometry the expensive
factorization step needs to be repeated. See Sec. 5.2 for a comparative
analysis in terms of accuracy and performance.

The sequential FMM [Kimmel and Sethian 1998], which requires
no pre-processing, has been compared to the heat method by several
authors in the literature [Crane et al. 2013; Romero Calla et al. 2019],
always resulting orders of magnitude slower, with a similar accuracy.
Even the fastest parallel implementation presented in [Romero Calla
et al. 2019] resulted slower than the heat method for meshes of mod-
erate size, and just slightly faster for large meshes. By comparing
the timings reported in Tables 2 and 3 from [Romero Calla et al.
2019] with the timings of our Table 2, it is evident that our simple
sequential implementation remains competitive even with respect
to their parallel FMM.
Our implementation is already sufficient to support interaction

on millions of triangles on commodity hardware. If more efficient
solvers are proposed, which are compliant with our constraints,
they could be integrated into our framework without changing it.
In particular, if parallel algorithms can be used, they can surely
improve scalability of the system further. However, we consider
this contribution to be orthogonal to our framework, which already
achieves performance on non-trivial objects.

5 RESULTS AND VALIDATION
We validated our work in three manners. First, we modeled decora-
tions that mimic real-world styles. Second, we tested the accuracy
and speed of the overall system and of the geodesic solver to show
that it remains interactive. Third, we validated our user interface
with a user study to show that novices to the system can replicate
given patterns.

5.1 Editing Sequences
In the beginning, the whole surface is seen as an individual patch
to be filled with a pattern. The initial subdivision can be obtained
with any of our operators: with closed polylines, with contours or
Voronoi patterns from manually selected seeds, through Poisson

sampling, with polylines, contours or streams that connect borders.
The subsequent operations will always refer to bordered regions.

Fig. 1, Fig. 17 and Fig. 18 show complex patterns created with our
system during interactive sessions. We chose to model patterns that
mimic real-world examples with different artistic styles to show
that our model can capture intricate decorations made by artists.
Table 1 shows statistics of the editing sequences corresponding to
such images.
Overall we found that creating complex patterns is easy with

our interface. We used from up to hundreds of single operations to
create patterns made of up to 1800 individual decorations, which
correspond to regions in our model. Note that some such operations
were applied as macros, simplifying editing further. The number of
operations we employ is significantly smaller than using standard
modeling tools with either polygonal modeling or sculpting work-
flows, e.g. see [Denning et al. 2011, 2015] for statistics of common
modeling sequences.

To gain a better sense of the recursive nature of the decorations,
we report the depth of the pattern tree, which reached 21 in our most
intricate result. This shows that by applying patterns recursively,
even just a few times, we can greatly increase the complexity of the
decoration while maintaining the editing manageable for users.

5.2 Performance and Accuracy
In our examples, we handle models between 500k and 2M triangles,
which are further subdivided during editing. Throughout the mod-
eling sequences, our system remains interactive with computation
times of about 0.2s per operation, including geodesic computation,
mesh cutting and graph update. Memory usage is also compact,
never exceeding 300Mb, which includes the mesh and the geodesic
solver, as well as interface support data. Performances were evalu-
ated on a 2.9 GHz laptopwith 16 GB of RAM running on a single-core
for our application.
Fast geodesic computation is the main technical feature that en-

ables us to model decorations well. We test the performance and
accuracy of our solver by computing the geodesic field from a single
source to all vertices on a variety of meshes, summarized in Table 2.
While we use a very simple graph, our solver remains accurate
enough with an error between 1.1% and 1.6% over an exact polyhe-
dral solution. Computation times are between 0.015s and 2.951s for
a single-core implementation running on meshes between 300k and
28M triangles. This speed is fast enough for all our modeling needs.
Following the discussion in Sec. 4.2, we compared our solver

to a reference implementation of the FMM [Jacobson 2021], and
to the author’s implementation of the heat method [Crane et al.
2013], also using as a reference the exact polyhedral solver VTP
[Qin et al. 2016], which is a state-of-the-art MMP-like method. The
accuracy of our solver is just slightly lower than the heat method
on relatively small meshes, while being better on large meshes; the
FMM method is consistently more accurate, with an error two to
five times smaller than our method. On the other hand, our solver
consistently runs at roughly twice the speed of the heat method,
and about 40 times faster than FMM. Our method always remains
compatible with interaction, even when considering the additional
times for update after mesh cutting. Conversely, the FMM method

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:13

Fig. 17. Results created with our application starting from undecorated models, shown in the insets. Decorations were inspired by real-world examples: the
tank-teapot on the left reproduces the playful look of handmade toys, the result in the middle matches the appearance of carnival masks of Venice, the statue
on the right is decorated with intricate patterns that imitate tangles on ceramics. Statistics about the models and the editing sessions are reported in Fig. 1.

model triangles triangles number of number of tree average time memory
name at start at end regions operations depth per operation usage at end

fertility 0.50M 0.90M 1810 655 21 0.134s 96Mb
dinopet 0.60M 0.81M 1304 212 6 0.141s 110Mb
teapot 1.50M 1.65M 511 129 13 0.146s 173Mb
tank 1.45M 1.68M 636 145 10 0.189s 174Mb
mask 2.00M 2.15M 62 30 5 0.232s 228Mb
elephant 2.00M 2.61M 364 212 13 0.241s 278Mb

Table 1. Statistics on the editing sequences used for interactive decoration. The average time per operation takes into account the time needed to compute the
geodesic field, cut the mesh, update the graph and the pattern representation data.

model VTP FMM heat ours Dijkstra

name triangles solve solve error build solve error build solve error update solve

kitten 300k 3.0s 0.813 0.5% 1.49s 0.068s 0.5% 0.061s (24x) 0.015s (4.5x) 1.1% 0.013s 0.036s
elephant 500k 10.9s 1.572 0.4% 3.47s 0.095s 0.5% 0.098s (35x) 0.027s (3.5x) 1.1% 0.023s 0.063s
fertility 500k 1.489 3.5s 0.4% 2.86s 0.123s 0.5% 0.109s (26x) 0.026s (4.8x) 1.1% 0.023s 0.061s
lucy small 525k 2.064 9.1s 0.7% 1.98s 0.082s 1.5% 0.175s (11x) 0.034s (2.4x) 1.6% 0.025s 0.076s
mask 2.0M 121.0s 8.674 0.3% 14.4s 0.391s 1.1% 0.585s (24x) 0.114s (3.4x) 1.2% 0.115s 0.281s
nefertiti 2.0M 20.3s 10.957 0.3% 14.8s 0.345s 0.9% 0.730s (20x) 0.149s (2.3x) 1.5% 0.139s 0.329s
dragon 7.2M 79.9s 121.300 0.4% 59.6s 1.500s 3.0% 2.613s (24x) 0.446s (3.9x) 1.5% 0.571s 1.110s
thai statue 10.0M 83.1s 196.519 0.6% 99.0s 2.724s 6.9% 5.317s (18x) 0.935s (2.9x) 1.6% 0.770s 1.927s
lucy 28.0M – – –% – – – 16.09s (– x) 2.639s (– x) – 2.951s 6.091s

Table 2. Comparison with the exact VTP [Qin et al. 2016], the FMM [Jacobson 2021; Kimmel and Sethian 1998], and the heat method [Crane et al. 2013].
For the latter we use the implementation provided by the author, using Cholmod as backend. Columns build report pre-processing times to pre-factor the
system and to build the graph, respectively. Build times for our solver also include the time to compute the triangle adjacency needed to build the graph.
Columns solve report average time for computing the distance field from a single point source, where average is taken over 100 random samples. We report
root-mean-square errors between results of approximated methods and the polyhedral solution from [Qin et al. 2016]. Speedup factors reported between
brackets are related to the heat method, which is the fastest of competitors. Column update reports the average time to update our graph after mesh split,
where the average is taken over 100 different long slices that roughly cut the mesh in half. The last column reports times to run a Dijkstra search on our graph.
The last three models from the Stanford 3D scanning repository http://graphics.stanford.edu/data/3Dscanrep/ have been used only for timing experiments. In
the cases of very large models, VTP and FMM fail to complete, while the heat method generates unrecoverable numerical errors.

1:14 • Nazzaro et al

Fig. 18. Decoration of an organic surface obtained using noise and displace-
ment. Note how operations can be applied over already displaced regions.

is definitely too slow to support interaction on large meshes; while
the heat method cannot be updated after mesh cutting without
undergoing the cumbersome pre-processing step.
In order to stress the performance of our method, we have run

experiments on meshes containing up to a few tenths of millions
triangles. Although, with such a large meshes, a complete solve over
the whole mesh may take more than one second, we remark that
our method becomes faster as the target region becomes smaller.
Therefore, even with such very large models, we expect it to be slow
for the first few operations, then accommodate a more responsive
frame rate.

In terms of pre-computation times, the heat method need factor-
izing a sparse matrix of the same size of the mesh. Such high times
suggest that it would be hard to try a dynamic update after mesh
edit. Conversely, the time spent to build our graph is consistently
shorter than the time to load a mesh from disk and build a standard
data structure.

We also compared our solver to a straightforward implementation
of Lanthier’s graph [Lanthier et al. 2001] with just one Steiner point
per edge, using the same graph traversal algorithm. In terms of
accuracy, results are comparable to our solver. We cannot objectively
compare solve times as the two implementations were not equally
optimized, but on average our solver was about 10 times faster.
Regardless of low-level optimizations, we assume our method to
be more efficient, since Lanthier’s graph with one Steiner node per
edge is more than three times larger, as explained in Sec. 4.2. Beyond
accuracy and performance, our graph is much easier to maintain
upon mesh cutting, and that was the determining factor, which
made it a better choice for our application.

Finally, we evaluate the performance of running a standard Dijk-
stra search on our graph, rather than using the SLF/LLL heuristics
of our solver. The timings of the Dijkstra search result consistently
more than twice slower than ours.

5.3 User Study
We ran a user study to validate whether our prototype system is
easy to use, whether it allows users to model tangle patterns.

Experimental procedure. We asked 17 subjects with different de-
grees of expertise, ranging from novices to professional 3D artists,
to use our prototype after a short training and an unguided editing
session on a model of their choice. We asked subjects to perform
three matching tasks of increasing difficulty, in which they had to
use the application to reproduce a target image, shown in a picture.
For these tasks we chose the mask model as input mesh, which
has non-trivial topology but is also easy to navigate in a 3D viewer.
Images are provided in the additional material and in Fig. 19.

After each task, subjects were asked to rate the similarity of their
results with the reference and to evaluate how easy they found
it to complete the task, using a scale from 1 to 10. We also asked
subjects to rate whether they would have been able to obtain the
same kind of results with a different 3D application, whether they
found the interface responsive, and whether they were satisfied with
the overall experience. We include a copy of the final questionnaire
in the supplemental material.

Quantitative Evaluation. Fig. 19 shows the results of our user
study, where for all ratings we rejected the null hypothesis (𝑝 ≤
0.05), i.e. those results are statistically significant.

All 17 users were able to successfully complete the reproduction
tasks, spending different amounts of time in the editing session, but
never more than 4 minutes for each task, out of a maximum task
length of 5 minutes. All users rated their results quite similar, if
not identical, to the reference ones. This suggests that our interface
provides sufficient control to reproduce given complex patterns. All
subjects also found the tasks easy to perform, and reported that
they would not have been able to obtain the same kind of results
with a different 3D editing software.

In general, all subjects also found the interface responsive and
were satisfied with the overall experience with the application, con-
firming that our implementation remains interactive at all times.

In conclusion, the user study demonstrated that users agree that
our application is expressive, easy to use, and can produce results
that match the look of real decorated objects.

Qualitative Feedback. Some non-expert users informally reported
that they were surprised by the complexity of the results they man-
aged to obtain with the application and the ease with which they
were able to control the editing operations. We think that this can-
not be explained only by the usability of the interface, but rather
it is a direct consequence of the intuitive design of our editing op-
erators, which requires no expertise to be understood. These facts
suggest that the editing workflow of our application is well-suited
for non-technical artists and designers, too.

Experts users reported that they found the application responsive
and pleasant to use. We quote here some informal feedback we
collected: “The editing was surprisingly fast and enjoyable. I did not
have to think about triangles, edge loops or topology issues as in
Maya or Blender; I could just focus on the result.”

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:15

task easyness result similaritycompletion time

ta
sk

 1
ta

sk
 2

ta
sk

 3
ov

er
al

l

ta
sk

 1
ta

sk
 2

ta
sk

 3
ov

er
al

l
1 10 1 10

app. responsiveness subject expertise

ov
er

al
l

ov
er

al
l

1 10 1 10

subject satisfactionalternative app.

ov
er

al
l

ov
er

al
l

no yesno yes

ta
sk

 1
ta

sk
 2

ta
sk

 3

20s 200s

ta
sk

 1

ta
sk

 2

ta
sk

 3

target images

Fig. 19. Result data from the user study. Histograms on the left report the
time spent by the subjects to complete each task. The remaining bar charts
show subjects’ feedback about their tasks: users with different amount
of expertise found the tasks easy to perform, their results similar to the
reference ones and the application responsive. All subjects were satisfied
with their editing experience with the application and do not think that
using another digital tool would allow them to obtain the same results at
the same time.

6 FUTURE WORK AND LIMITATIONS
Future Work. The architecture of geoTangle, which is based on

the tangle algebra and on our geodesic solvers, can be extended
in various ways, by plugging more operators and tools into the
same framework. All extensions listed below are orthogonal to the
contribution of this paper, so we propose them for possible future
work.

One possible extension consists of supporting more geometric
primitives to draw boundary lines. In a companion paper [Authors
2021], we show that interactive Bézier splines can be ported to
manifolds. Such technology could be seamlessly integrated into
geoTangle, being fully compatible with its data structures, and it can
address efficiently meshes of the same size.

Another possible extension is the placement of multiple instances
of a structured shape, e.g. SVG. The basic shape can be drawn in
2D. The control points of the drawing are mapped to the target
regions either with normal mapping (for circular regions) or with
bilinear coordinates (for quadrangular regions), and the replicas are

drawn directly inside the target regions by using geodesic primi-
tives. Note that we do not need to compute a dense mapping (local
parametrization) from the reference region to the target region,
since a sparse mapping of control points is sufficient, which can
be computed efficiently on-the-fly with simple extensions of our
geodesic computations.

Directional fields on surfaces have been extensively studied in the
literature, and their interactive design and control can be effectively
supported [Vaxman et al. 2017]. Directional fields can be used to
generate patterns based on further streamlines, which can be easily
combed and constrained to lines and boundaries in the decor. In this
case, we just substitute such fields to the gradients of our geodesic
fields. Frame fields can be used to warp the geodesic metric to
an anisotropic metric, thus allowing for a seamless and controlled
perturbation of geodesic fields.
Finally, diffusion curves [Orzan et al. 2008] can be naturally in-

corporated too, to support smooth-shaded coloring of regions.

Limitations. While we introduce a model for tangles on surfaces,
not all patterns can be easily reproduced. For example, recursive pat-
terns based on tight packing of arbitrarily-shaped elements cannot
be easily reproduced in terms of geodesics. While there is a large
literature on this, we remind the reader that packing is NP-hard
in general, so all methods proposed so far are necessarily strong
approximations.

Another type of pattern that we did not specifically include is flo-
ral decorations. One possibility would be to adopt a region-growing
model similar to the one used in procedural trees [Longay et al.
2012] and express it in terms of geodesic paths. The main concern
though is that controlling floral arrangement over an arbitrary man-
ifold remains hard since there is no global orientation to use while
growing. We leave the investigation of such further patterns to
future work.
A possible concern of our implementation is that we do not add

mesh details besides the ones arising from splitting regions. This
may lead to aliasing artifacts in the generated patterns, for example
in the streamlines case. In our experience this did not happen since
we always use very detailed meshes. If this were to be a problem,
since all operations are procedural, we could re-apply them on a
subdivided copy of the mesh to get higher resolution without losing
edits. This is the approach used in Adobe Substance Designer to
solve a similar issue in 2D [Adobe 2020].

7 CONCLUDING REMARKS
We have presented an interactive method for generating recursive
patterns on surfaces and its use to model real-world decorations.
Our model consists of a closed algebra of regions, which can be
split by applying four operators at will. Operators are defined upon
geodesic fields on the surface and our implementation relies on
fast geodesic computations. A user study shows that the resulting
application is effective, it is responsive on meshes in the order of one
or a few million triangles, and it is easy to use for novices too. Our
system is easily extensible in a variety of ways, while some specific
patterns, such as tight packings of shapes and floral decorations,
still remain out of its scope and will be addressed in future work.

1:16 • Nazzaro et al

8 ACKNOWLEDGMENTS
Photos of real objects: teapot by Natalya Sots; elephant by Dayal J.
Daryanani. 3DModels: teapot byMichele Serpe, rolling teapotmodel
by Brice Laville (concept by Tom Robinson - RenderMan “Rolling
Teapot" Art Challenge), mask by Turbosquid user StriderS, fertility
from the Stanford 3D Scanning Repository, dyno by Turbosquid
user DANIEL38. This work was partially supported by MIUR under
grants PRIN DSurf and Dipartimenti di Eccellenza.

A THE ALGEBRA OF TANGLES
Elements. Let M be a 2-manifold, possibly with boundary. A

region 𝑟 is a connected subset ofM bounded by a finite number of
oriented boundary loops {𝑙0, . . . , 𝑙𝑘 }; each loop is defined in turn
with a sequence of curves. A tangle T is a tree of regions, having
its root atM; the children of each node 𝑟 in T form a partition of
region 𝑟 .
Regions can be arranged in groups, which are used to apply op-

erators to multiple regions. A node in T is identified with a tag
⟨𝑝𝑖 , 𝑔𝑖 , 𝑟𝑖 ⟩ where: 𝑝𝑖 is its parent region in T ; 𝑔𝑖 is the group it
belongs to; and 𝑟𝑖 is its unique region identifier. The root region
corresponding toM is identified with ⟨⊥, 0, 0⟩, while new group
and region identifiers are generated incrementally as operators mod-
ify the tangle they are applied to. The path to a region 𝑟𝑖 in T is
obtained by recursively substituting its parent 𝑝𝑖 with its tag.
In summary, a region of T is fully described by its geometry,

namely the set of its boundary loops, and its tag.

Subdivision operators. A generic operator 𝑂𝑝 has the form

(T , 𝑟)
𝑂𝑝 (𝑃)
↦→ T ′

where T is a tangle, 𝑟 is a region of T , and 𝑃 is a set of parameters
that are specific of operator 𝑂𝑝; the result T ′ is a modified tangle
with additional leaves.

A subdivision operator induces a partition of region 𝑟 . If 𝑟 is a
leaf node, the result is a collection of regions that become children
of 𝑟 in T ′; if 𝑟 is an internal node, this partition is intersected with
the leaves of the subtree rooted at 𝑟 to obtain the new leaves in T ′.

Grouping and joining operators. We support explicit and implicit
grouping of regions. Implicit grouping results from the application
of a subdivision operator. The default tagging generates two groups:
the foreground and the background, which are assigned new group
tags; optionally, one may select to apply the same group to all
regions, or a different group to each region, or groups assigned
cyclically mod 𝑘 . When an operator is applied to an internal node
𝑟𝑖 ∈ T , the group assigned to a new leaf 𝑟 𝑗 ∈ T ′ will depend both
on the group assigned by the operator to the region partitioning 𝑟𝑖
and containing 𝑟 𝑗 , and on the group of the parent of 𝑟 𝑗 in T ′: leaves
with the same combination will be assigned the same new group.

Explicit grouping is performed by selecting a collection of regions
in T and assigning the same group 𝑔 to all of them. We support the
following two operators:

T
Group (𝑅)
↦→ T ′ T

Ungroup (𝑔)
↦→ T ′

where 𝑅 is a set of regions and 𝑔 is a group tag in T . The Group
operator assigns a new common group tag to all regions of 𝑅 in T ′.

Conversely, the Ungroup operator considers all regions tagged with
group 𝑔 in T and assigns a new different group to each of them in
T ′. We also support explicit joining of regions:

T
Join(𝑅)
↦→ T ′

where 𝑅 is a set of regions of T that form a single connected com-
ponent. The Join operator assigns the same region identifier to all
regions of 𝑅 in T ′, so that they will be treated as a single region. In
practice, explicit grouping and joining are performed by selection
through user interaction.

REFERENCES
Y.Y. Adikusuma, Z. Fang, and Y. He. 2020. Fast Construction of Discrete Geodesic

Graphs. ACM Trans. Graph, 39, 2 (2020), 1–14.
Adobe. 2020. Substance Designer. https://www.substance3d.com
Authors. 2021. submitted paper.
Autodesk. 2020. Mudbox. https://autodesk.com/mudbox
D.P. Bertsekas. 1998. Network optimization: continuous and discrete models. Athena

Scientific, Belmont, MA, USA.
P. Bose, A. Maheshwari, C. Shu, and S. Wuhrer. 2011. A Survey of Geodesic Paths on

3D Surfaces. Comput. Geom. Theory Appl. 44, 9 (2011), 486–498.
A.M. Bronstein, M.M. Bronstein, and R. Kimmel. 2009. Numerical Geometry of Non-Rigid

Shapes. Springer, New York.
M. Campen, M. Heistermann, and L. Kobbelt. 2013. Practical Anisotropic Geodesy.

Comp. Graph. Forum 32, 13 (2013), 63–71.
M. Campen and L. Kobbelt. 2011. Walking On Broken Mesh: Defect-Tolerant Geodesic

Distances and Parameterizations. Comp. Graph. Forum 30 (2011), 623–632. Issue 2.
M. Campen, H. Shen, J. Zhou, and D. Zorin. 2020. Seamless Parametrization with

Arbitrary Cones for Arbitrary Genus. ACM Trans. Graph. 39, 1 (2020), 2:1–2:19.
E. Carra, C. Santoni, and F. Pellacini. 2019. Grammar-based procedural animations for

motion graphics. Computers & Graphics 78 (2019), 97–107.
J. Chen and Yi. Han. 1990. Shortest Paths on a Polyhedron. In Proc. Symp. on Comp.

Geo. Association for Computing Machinery, New York, NY, USA, 360–369.
W. Chen, X. Zhang, S. Xin, Y. Xia, S. Lefebvre, and W. Wang. 2016. Synthesis of filigrees

for digital fabrication. ACM Trans. Graph. 35, 4 (2016), 1–13.
K. Crane, M. Livesu, E. Puppo, and Y. Qin. 2020. A Survey of Algorithms for Geodesic

Paths and Distances. arXiv:2007.10430 [cs.GR]
K. Crane, C. Weischedel, and M. Wardetzky. 2013. Geodesics in heat: A new approach

to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013), 152:1–
152:11.

J.D. Denning, W.B. Kerr, and F. Pellacini. 2011. MeshFlow: Interactive Visualization of
Mesh Construction Sequences. ACM Trans. Graph. 30, 4 (2011), 66:1–66:8.

J.D. Denning, V. Tibaldo, and F. Pellacini. 2015. 3DFlow: Continuous Summarization of
Mesh Editing Workflows. ACM Trans. Graph. 34, 4 (2015), 140:1–140:9.

D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S.Worley. 2002. Texturing andModeling:
A Procedural Approach (3 ed.). Morgan Kaufmann, San Francisco, CA, USA.

Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. 1997. The Farthest Point Strategy
for Progressive Image Sampling. Trans. Img. Proc. 6, 9 (1997), 1305–1315.

M. Graichen, J. Izraelevitz, and M.L. Scott. 2016. An Unbounded Nonblocking Double-
Ended Queue. In 2016 45th International Conference on Parallel Processing (ICPP).
217–226.

Philipp Herholz and Marc Alexa. 2018. Factor once: Reusing cholesky factorizations on
sub-meshes. ACM Trans. Graph. 37 (2018), 230:1–230:9.

P. Herholz, T.A. Davis, and M. Alexa. 2017a. Localized Solutions of Sparse Linear
Systems for Geometry Processing. ACM Trans. Graph. 36, 6 (2017), 183:1–183:8.

P. Herholz, F. Haase, and M. Alexa. 2017b. Diffusion diagrams: Voronoi cells and
centroids from diffusion. Comp. Graph. Forum 36, 2 (2017), 163–175.

A. Jacobson. 2021. gptoolbox. https://mathworks.com/matlabcentral/fileexchange/
49692-gptoolbox.

C. Jiang, C. Tang, A. Vaxman, P. Wonka, and H. Pottmann. 2015. Polyhedral patterns.
ACM Trans. Graph. 34, 6 (2015), 1–12.

R. Kimmel and J. A. Sethian. 1998. Computing Geodesic Paths on Manifolds. Proc. Natl.
Acad. Sci. 89, 15 (1998), 8431–8435.

M. Lanthier, A. Maheshwari, and J.-R. Sack. 1997. Approximating weighted shortest
paths on polyhedral surfaces. In Proc. ACM Symp. on Computational Geometry.
Association for Computing Machinery, New York, NY, USA, 274–283.

M. Lanthier, A. Maheshwari, and J.-R. Sack. 2001. Approximating shortest paths on
weighted polyhedral surfaces. Algorithmica 30, 4 (2001), 527–562.

Z. Levi. 2021. Direct Seamless Parametrization. ACMTrans. Graph. 40, 1 (2021), 6:1–6:14.
M. Li, D.M. Kaufman, V.G. Kim, J. Solomon, and A. Sheffer. 2018. OptCuts: Joint

Optimization of Surface Cuts and Parameterization. ACM Trans. Graph. 37, 6 (2018),
247:1–247:13.

geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces • 1:17

Y. Li, F. Bao, E. Zhang, Y. Kobayashi, and P. Wonka. 2011. Geometry Synthesis on
Surfaces Using Field-Guided Shape Grammars. IEEE Trans. Vis. Comp. Graph. 17, 2
(2011), 231–243.

L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S.J. Gortler. 2008. A Local/Global Approach to
Mesh Parameterization. Comp. Graph. Forum 27, 6 (2008), 1495–1504.

H. Loi, T. Hurtut, R. Vergne, and J. Thollot. 2017. Programmable 2D Arrangements for
Element Texture Design. ACM Trans. Graph. 36, 3 (2017), 27:1–27:17.

S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: Interactive
procedural modeling of trees on a a tablet. In EG Symp. on Sketch-Based Interfaces
and Modeling. The Eurographics Association, Geneve, Switzerland, 107–120.

Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The
Discrete Geodesic Problem. SIAM J. Comput. 16, 4 (Aug. 1987), 647–668.

A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin. 2008.
Diffusion Curves: A Vector Representation for Smooth-shaded Images. ACM Trans.
Graph. 27, 3 (2008), 92:1–92:8.

A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. 1993. Dimension-Independent
Modeling with Simplicial Complexes. ACM Trans. Graph. 12, 1 (1993), 56–102.

Pilgway. 2019. 3D-Coat. https://3dcoat.com
Pixologic. 2021. ZBrush. https://pixologic.com/zbrush/features/overview/
R. Poranne, M. Tarini, S. Huber, D. Panozzo, and O. Sorkine-Hornung. 2017. Autocuts:

Simultaneous Distortion and Cut Optimization for UV Mapping. ACM Trans. Graph.
36, 6 (2017), 215:1–215:11.

F. Prada, M. Kazhdan, M. Chuang, and H. Hoppe. 2018. Gradient-Domain Processing
within a Texture Atlas. ACM Trans. Graph. 37, 4 (2018), 154:1–154:14.

Y. Qin, X. Han, H. Yu, Y. Yu, and J. Zhang. 2016. Fast and Exact Discrete Geodesic
Computation Based on Triangle-oriented Wavefront Propagation. ACM Trans.
Graph. 35, 4 (2016), 125:1–125:13.

L.A. Romero Calla, L.J. Fuentes Perez, and A.A. Montenegro. 2019. A minimalistic
approach for fast computation of geodesic distances on triangularmeshes. Computers
& Graphics 84 (2019), 77–92.

C. Santoni, C. Calabrese, F. Di Renzo, and F. Pellacini. 2016. Sculptstat: Statistical
analysis of digital sculpting workflows. arXiv:1601.07765

C. Santoni and F. Pellacini. 2016. gTangle: A Grammar for the Procedural Generation
of Tangle Patterns. ACM Trans. Graph. 35, 6 (2016), 182:1–182:11.

R. Sawhney and K. Crane. 2017. Boundary first flattening. ACM Trans. Graph. 37, 1
(2017), 1–14.

C. Schlick. 1994. Fast Alternatives to Perlin’s Bias and Gain Functions. In Graphics Gems
IV, P.S. Heckbert (Ed.). Academic Press, Amsterdam, The Netherlands, 401–403.

J. Schmid, M.S. Senn, M. Gross, and R.W. Sumner. 2011. Overcoat: an implicit canvas
for 3d painting. ACM Trans. Graph. 30, 4 (2011), 28:1–28:10.

M. Schwarz and P. Wonka. 2015. Practical Grammar-based Procedural Modeling of
Architecture. In SIGGRAPHAsia 2015 Courses. Association for ComputingMachinery,
New York, NY, USA.

O. Sendik and D. Cohen-Or. 2017. Deep Correlations for Texture Synthesis. ACM Trans.
Graph. 36, 5 (2017), 161:1–161:15.

N. Sharp and K. Crane. 2020. You Can Find Geodesic Paths in Triangle Meshes by Just
Flipping Edges. ACM Trans. Graph. 39, 6 (2020), 249:1–249:15.

L. Shi, B. Li, M. Hašan, K. Sunkavalli, T. Boubekeur, R. Mech, and W. Matusik. 2020.
MATch: Differentiable Material Graphs for Procedural Material Capture. ACM Trans.
Graph. 39, 6 (2020), 1–15.

J. Tao, J. Zhang, B. Deng, Z. Fang, Y. Peng, and Y. He. 2021. Parallel and scalable
heat methods for geodesic distance computation. IEEE Trans. Patterns Analysis and
Machine Intelligence 43 (2021), 579–594.

A. Vaxman, M. Campen, O. Diamanti, D. Bommes, K. Hildebrandt, M. Ben-Chen, and
D. Panozzo. 2017. Directional Field Synthesis, Design, and Processing. In ACM
SIGGRAPH 2017 Courses. Association for Computing Machinery, New York, NY,
USA.

X. Wang, Z. Fang, J. Wu, S.-Q. Xin, and Y. He. 2017. Discrete Geodesic Graph (DGG)
for Computing Geodesic Distances on Polyhedral Surfaces. Comput. Aided Geom.
Des. 52, C (2017), 262–284.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the Art
in Example-based Texture Synthesis. In Eurographics State of the Art Report. The
Eurographics Association, Geneve, Switzerland.

K. Weiler. 1985. Edge-Based Data Structures for Solid Modeling in Curved-Surface
Environments. IEEE Computer Graphics and Applications 5, 1 (1985), 21–40.

Pengfei Xu, Hongbo Fu, Youyi Zheng, Karan Singh, Hui Huang, and Chiew-Lan Tai.
2018. Model-guided 3d sketching. IEEE transactions on visualization and computer
graphics 25, 10 (2018), 2927–2939.

Xiang Ying, Caibao Huang, Xuzhou Fu, Ying He, Ruiguo Yu, Jianrong Wang, and
Mei Yu. 2019. Parallelizing discrete geodesic algorithms with perfect efficiency.
Computer-Aided Design 115 (Oct. 2019), 161–171.

X. Ying, X. Wang, and Y. He. 2013. Saddle Vertex Graph (SVG): A Novel Solution to the
Discrete Geodesic Problem. ACM Trans. Graph. 32, 6 (2013), 170:1–170:12.

Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and H. Huang. 2018. Non-stationary
Texture Synthesis by Adversarial Expansion. ACM Trans. Graph. 37, 4 (2018), 49:1–
49:13.

