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Abstract

We discuss how classical straightedge and compass constructions can be ported to manifold surfaces under the geodesic metric.
After defining the equivalent tools in the manifold domain, we analyze the most common constructions and show what happens
when trying to port them to surfaces. Most such constructions fail, because the geometric properties on which they rely no longer
hold under the geodesic metric. We devise some alternative constructions that guarantee at least some of the properties of their
Euclidean counterpart; while we show that it is usually impossible to guarantee all properties together. Some constructions
remain still unsolved, unless additional tools are used, which violate the constraints of the straightedge and compass framework
since they take explicit distance measures. We integrate our constructions in the context of a prototype system that supports the
interactive drawing of vector primitives on a surface represented with a high-resolution mesh.

1. Introduction

The ancient Greek mathematicians developed a set of geometric
techniques, which go under the name of straightedge and compass
constructions, to draw a number of planar geometric figures and
arrangements, involving straight lines, circles, and angles. The pe-
culiar aspect of such constructions is that they do not require taking
any explicit measure. More formally, the only permissible construc-
tions are those granted by Euclid’s first three postulates, and they
are based on two ideal tools: the straightedge, which can be po-
sitioned between any two points and extended indefinitely in both
directions; and the compass, which can trace circles of any radius
by starting with its needle and pencil points at two given points in
the plane. Besides, all points of intersection between straight lines
and circles drawn with such tools can be found.

The straightedge and compass constructions can be used to de-
fine vector graphics in the plane. In fact, several graphics primitives
and constructions made available in the GUI of drawing systems
can be addressed with such basic tools. This work is part of our ef-
fort to bring vector graphics to the manifold domain, i.e., by assum-
ing a surface as a canvas [MNPP21, NPP21]. Here, we investigate
to which extent the straightedge and compass constructions can be
ported to the manifold setting, by using equivalent tools.

On a surface, a geodesic line is the counterpart of a straight line
in the plane; and a geodesic circle is defined as an isoline of the
distance field from a given point. Similarly to the Euclidean case,
we will take for granted that the shortest geodesic connecting two
points on a surface can be found and extended indefinitely on both
sides; that the isoline of the distance field from a point and pass-
ing through another point can be traced; and that the intersections
between any two such curves can be found.
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The main challenge here is that constructions in the Euclidean
context rely on geometric properties that no longer hold in the
geodesic metric. In fact, even the basic properties of straight lines
and circles do not hold on a surface without additional conditions.
For instance, a long-enough geodesic line may self-intersect; there
might exist infinitely many geodesic segments of different lengths
joining two distinct points; and even the shortest geodesic segment
between a pair of points might not be unique. Similar issues arise
for circles: a generic isoline of the distance field from a point is
guaranteed neither to be homeomorphic to a standard circle, nor
to be smooth at all points; and equal angles at the center do not
intercept equal chords or arcs on the circle.

Nonetheless, geodesic line segments and circles are somehow
well-behaved as long as they the are “small enough”. In particu-
lar, we will restrict our study to constructions that occur inside a
strongly convex region (see Sec. 3 for a formal definition). Note
that, differently from the Euclidean case, convex sets on a manifold
cannot be too big; in particular, they cannot cross the cut locus of
anyone of their points. Inside convex regions, geodesic lines and
circles are smooth and behave like in the Euclidean plane from a
topological point of view, i.e., in the way they intersect.

Even in this favorable case, most metric properties, which are
crucial for the straightedge and compass constructions, are lost.
In Sec. 4, a quick review of the main constructions reveals that
most of them fail, or produce limited results, once they are lifted
to the manifold setting. In order to overcome such limitations, we
resort to additional tools, such as the square set to trace perpendic-
ular lines, and the composition of distance fields to trace further
isolines, which are neither geodesics, nor arcs of circles, but have
some of their properties in the Euclidean case.

Our extended set of tools is sufficient to support efficiently most
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constructions necessary to create vector graphics on surfaces. On
this basis, we have implemented a first prototype system, which we
demonstrate in Sec. 5.

2. Related work

The straightedge and compass constructions rely on basic theorems
of the Euclidean geometry, which relate lengths and angles. If one
tries to find similar relations on a manifold surface, then curva-
ture must be taken into account. This subject was thoroughly in-
vestigated during the last two centuries, in the context of the the-
ory of intrinsic geometry of surfaces. To the best of our knowl-
edge, Rodrigues was the first mathematician to address the prob-
lem [Rod16], using a spherical mapping to study the ratio of the
areas of corresponding surfaces. His work provides the first def-
inition of intrinsic curvature, as formalized later by Gauss in his
Theorema Egregium in 1827. Many results followed, which com-
pare the geometry of a general manifold with that of a model space
with constant curvature. See [CE75, Cha06] for a comprehensive
account on the subject.

Referring just to cases addressed in this paper, a corollary of
the Gauss-Bonnet theorem relates the internal angles of a geodesic
polygon to the curvature of the region it encloses. Such result ex-
plains the challenge in defining an isosceles geodesic triangle (see
Section 4.7) and, more in general, in addressing constructions that
require geodesic lines of given lengths and forming given angles.

Alexandrov investigated thoroughly the relations between quan-
tities measured on a surface with their counterpart on surfaces with
constant curvature (a.k.a. CAT — Cartan-Alexandrov-Topogonov —
spaces) [Ale48]. In a nutshell, it turns out that geodesic lines, which
are cast from a common source along different directions, tend to
converge if the curvature of the space is positive, and to diverge
if it is negative. Based upon these facts, many comparison theo-
rems involving Alexandrov and CAT spaces have been proposed
in the literature. See [AKP19] for a recent account on this subject;
interestingly enough, the title of the chapter addressing geodesic
triangles is The ghost of Euclid.

The literature concerning tools for geodesic computations is vast
and has been recently surveyed in [CLPQ20]. The specific methods
we rely on are summarized in Sec. 5.

3. The geodesic arsenal

Definitions. Let S be a smooth surface embedded in R*. The em-
bedding induces a Riemannian metric, defining the length L(y) of
any curve Yon S. The geodesic distance d(p, q) between two points
p,q € S is the infimum of length L over all curves y having their
endpoints at p and g; one such curve Yy satisfying L(Ypq) =d(p,q)
is called a shortest geodesic path between p and gq.

A shortest geodesic path may not be unique. The cut locus of a
point p is defined as the closure of the set of points that can be con-
nected with p with more than one minimal geodesic; the injectivity
radius rp is in fact the distance of p from its cut locus. A normal
ball centered at p is a ball that does not intersect the cut locus of p.
A set U C S is said to be strongly convex if for each pair of points

Figure 1: The cut locus (in red) of a point p (in blue) on a Torus
(front and back view. The convex ball centered at p (in green) can-
not cross the outer equator, since otherwise it would contain pairs
of points that are connected by a geodesic that do not belong to the
ball. The cut locus has been computed with the method proposed
in [MLP21].

p and g in U there exists a unique shortest geodesic path Y4 con-
necting p to g in S which is entirely contained in U, and moreover
this property holds also for every open ball contained in U. By def-
inition, a convex set U cannot extend beyond a maximal normal
ball centered at any of its points. Figure 1 shows an example of cut
locus of a point and a strongly convex ball centered at that point.

Geodesic curves can be also characterized by their straightness.
In order to assess the curvature of lines in the intrinsic geometry
of S, one needs to introduce the covariant derivative, which we
omit here for brevity. Intuitively, from an extrinsic point of view, a
geodesic curve Y does not make any further turn except the strictly
necessary to follow the curvature of S: it turns with S, but it does
not turn on S. Thus, geodesics play the role of straight lines on S.

Similarly to straight lines in Euclidean space, a geodesic curve
may extend indefinitely and is completely defined by a point p and
its tangent vector in the tangent plane 7,,S at p. The exponential
map exp,, : TpS — § maps vectors of the tangent plane to points
on the surface, where point exp p(t) is defined as the other endpoint
of the geodesic path traced from p in the direction of  for length
|#]. In general, the exponential map is not injective; the injectivity
radius of p is the maximum radius rp such that exp p(t) is invertible
atallt € TS such that |t| < rp.

Let v and Y be two geodesics having a common endpoint at p;
the angle between them at p is defined from their tangent directions
in the tangent plane 7)S. See Fig. 2 for an example.

From now on, we will assume that all our constructions will be
contained in a strongly convex ball.

Geodesic tools. We will assume that the following primitives
for geodesic computations are available. Their implementation is
briefly addressed in Sec.5.

e Shortest-path: given points p,q € S, return the shortest geodesic
path Ypq connecting them;

e Tangent: given a curve Y on S and one of its points p, return the
direction ¢ € T),S tangent to Y at p;

e Geodesic-tracing: given point p € S and a tangent direction t €
TS, trace a geodesic through p and tangent to ¢ at p;
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Figure 2: Two geodesic lines y and y intersecting at point x € S
form an angle defined by their tangents at x on the tangent plane
TiS (red and blue arrows).

e Distance-field: given x € S, compute the field dx : S — R where
dx(y) :=d(x,y);

e Isoline: given field dj and a point ¢ € S return the isoline of dp
that goes through g;

e [ntersect: given any two lines on S, not necessarily geodesic,
return their intersections.

Note that Shortest-path only allows us to trace segments be-
tween two endpoints. However, once we have one such segment,
the joint use of Tangent and Geodesic-tracing allows us to extend
it indefinitely from both sides. We thus define the derived operation
Geodesic-line that traces an arbitrarily long line through a and b.
The Geodesic-line generalizes the straightedge to the manifold set-
ting. Likewise, the joint use of the Distance-field and Isoline prim-
itives allows us to obtain the derived operation Geodesic-compass,
which generalizes the compass.

Note that, the Tangent and Geodesic-tracing operators allow us
to bring directions from the surface to the tangent plane, and, in
the opposite direction, straight lines from the tangent plane to the
surface; this will allow us to directly exploit local constructions
about angles in the Euclidean setting.

Conversely, the Distance-field alone does not belong to the
straightedge and compass framework. On the other hand, since
the Distance-field is anyhow necessary to implement the Geodesic-
compass, we will use it directly to address constructions where the
basic tools fail, without taking explicit measures though.

4. Most used straightedge and compass constructions

Straightedge and compass constructions consist of iteratively ap-
plying the following five basic constructions:

. creating the line through two existing points;

. creating the circle through one point with center another point;
. finding the intersection point of two existing, non-parallel lines;
. finding the intersection points of a line and a circle;

. finding the intersection points of two circles.

AW N =

We address the above constructions in the manifold setting by
means of Geodesic-line (1); Geodesic compass (2); and Intersect
(3,4, 5). Note that, within a strongly convex set U, it is guaranteed
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that: any geodesic line will not self-intersect and will be the unique
shortest geodesic between its endpoints; any geodesic circle will be
homeomorphic to the standard circle; two geodesic lines either do
not intersect or intersect at a single point; a line and a circle, or two
circles, either do not intersect, or are tangent at one point, or inter-
sect at exactly two points. Fig. 3 show the five basic constructions
in the manifold setting.

There exist many straightedge and compass constructions in the
Euclidean setting. We review just a few of them, analyzing the
problems that hinder their direct extension to the manifold setting.

4.1. Copying, adding and subtracting segments

Given a line segment ab in the plane and a line b
¢ through another point c, find a point d on ¢ /

such that ab and cd have the same length. In a

the plane, the aperture of the compass is taken ‘E—d;_é

at ab, then the needle point is placed at ¢ and a circle is traced; point
d is taken as any of the two intersections of the circle with line /.
Notice that we are assuming a non collapsible compass here; it can
be shown that the same result can be achieved with a collapsible
compass, through a more involved procedure though.

Given two line segments ab and cd in the d
plane, extend ab at b for alengthequaltocd. In /\ b
the plane, segment ab is extended to a line with /
the straightedge; the aperture of the compass is a
taken at cd and a circle is traced by placing the needle point at b;
the intersection x of this circle with the line is taken, which lies on
the opposite side of a wrt b; line segment ax is the result.

#

Given two line segments ab and cd in the d b
plane, assuming that ab is longer than cd, ¢ /\ /
shorten ab at b by the length of cd. In the plane, a7
the aperture of the compass is taken at cd and a circle is traced by
placing the needle point at b; the intersection x of this circle with
ab is taken; line segment ax is the result.

All three constructions can be successfully ported to the mani-
fold setting in a straightforward way, by means of the basic con-
structions, as described in the previous section. In this case, ev-
erything works fine because we are addressing just distances and
collinearity, whose properties are preserved in the manifold setting.

4.2. Operations with angles

In the plane, an angle is defined by two half-lines ¢, and ¢}, incident
at a point x, which can be built with the straightedge, given two
points a and b lying on them, respectively.

In the plane, an angle can be bisected as a
follows. Place the needle point of the com-
pass at x, trace any circle and let p and ¢
be its intersections with ¢, and ;. Place the x
needle point at p, and next at g, with aper- q b
ture pq trace other two circles; let y be any of their two intersection
points. The line ¢, through x and y bisects the angle at x. An addi-
tional property of the bisector is that all its points are equidistant
from ¢, and £,.
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Figure 3: The five basic constructions on a sphere. The black curves are geodesic lines, while the curves in magenta are geodesic circles. We
denote with D(p,q) the geodesic circle centered at point p and passing through point q.

Figure 4: The bisection of an angle axb by reproducing the Eu-
clidean construction (left); and by tracing a geodesic with initial
tangent vector mathb fty obtained with the Euclidean construction
in the tangent plane TyS (right). In the first case, the green line Yxy
does not have any of the properties of a Euclidean bisector. In the
second case, the angle at x is truly bisected, but the points of Yxy
are not equidistant from lines Yxq and Yy, and Yxy may eventually
intersect one of them.

This construction fails in the manifold setting: neither the
geodesic line through x and y bisects the angle at x, nor its points are
equidistant from the input lines. We can resort to operators Tangent
and Geodesic-tracing to find a geodesic line that bisects the angle.
Given lines Yx and 7y, intersecting at x, find their tangent vectors
t, and #; at x. Extend such vectors to lines in the tangent plane,
and use the Euclidean construction to find line ¢y as above; let f,
be its direction at x. Trace geodesic line Yy through x and along
direction ty. The resulting line bisects the angle in the sense that the
angles formed by its tangent at x and the tangents of the two input
lines at x are equal, by construction. However, similarly to the pre-
vious case, its points will not have the equidistance property from
the input lines. In fact, the locus of equidistant points from the two
lines is not a geodesic line in general, and finding it is beyond the
scope of this paper, as it requires using the distance fields from Yxq
and v,;,, while we limit our distance fields to have their sources at
single points. Fig. 4 shows results obtained with the two methods.

A number of other constructions deal with operations on angles,
such as copying an angle to another place, adding or subtracting an-
gles, or creating angles of a few specified amplitudes, namely /2,
n/3, n/4, n/6. These problems are somehow local to the point x at
the tip of the angle, and can be addressed in the manifold setting
in a straightforward way, by finding the tangents of the geodesic
lines that define the angles at play, resolving the Euclidean con-

Figure 5: The bisector of a geodesic segment computed by re-
producing the Euclidean construction (a); by the zero isoline of
the difference of distance fields from a and b (b); and by tracing a
geodesic from the midpoint of the segment (obtained as in b) along
the orthogonal direction computed in the tangent plane TS (c).
Only the third construction gives a geodesic line orthogonal to ab
and through its midpoint.

struction in the tangent plane, and using the resulting directions to
trace geodesics back to the surface S. For this reason, we do not
analyze such constructions in detail.

4.3. Line segment bisector and midpoint

In the plane, the bisector is constructed as
follows. Given points a,b € R, first use the
straightedge to trace the straight-line segment
joining them. Then place the needle point of
the compass at a and the pencil point at b and
trace a circle; repeat the same operation with
needle at b and pencil at a. Let ¢,d be the in-
tersection points of the two circles; use the straightedge to trace
segment cd. In the Euclidean setting, the straight line line through
¢,d intersects segment ab orthogonally and at its midpoint x; this
is also the locus of points that have equal distance from a and b.

The construction above fails miserably in the manifold setting. If
we use Geodesic-line and Geodesic-compass to obtain points ¢, d
and connect them as above, and we use Intersect to compute the
intersection x of the two geodesic paths 7, and Y4, then in general
x will not be the midpoint of Y,, and the two paths will not be
orthogonal at x. Concerning distances, we only know that ¢ and d
are equidistant from a and b, but distances can be different at all
other points of Y.4.

In order to overcome this limitation, we resort to our additional
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Figure 6: Circle through three points a, b, c. Left: A straightforward
reproduction of the Euclidean construction fails because the inter-
section of the two green lines is not equidistant from a,b,c; a sim-
ilar failure would occur when intersecting lines from the construc-
tion of Fig.5(c). Right: The intersection of curves obtained with the
construction of 5(b) gives the correct center of the geodesic circle.

tools. Let dq,d), be the two distance fields with sources at a and b,
respectively. Compute the difference field d,;, = du — dj,; the two
points ¢ and d belong to the zero isoline of this field. If we extract
the Isoline through c of d,, the resulting line yaLb will intersect 7y,
at its midpoint x, which can be found with Intersect. It can be easily
seen that yj, and v, intersect orthogonally at x. Besides, all points
of yaLb are equidistant from a and b, by construction. However, Yalb
is not a geodesic line, hence not straight in the manifold sense.

If we want to obtain a geodesic line that intersects orthogonally
Yaup at its midpoint, we have to give up equidistance from a and b
at all points, and we need a further construction. We first compute
the Tangent t, of Y, at x; this tangent defines a line £ in the tangent
plane 7:S. We use the Euclidean construction to find the line o+
through x and orthogonal to ¢ in 7S, as follows: first place the
needle of the compass at x and trace a circle; let p and g be the
intersections of such circle with ¢; next find /* as the perpendicular
bisector of segment pg. Let 1+ be the direction of /1 in T;S, use
Geodesic-tracing to draw a geodesic line from x in direction t* on
S. The resulting line is the desired result.

Fig. 5 shows results obtained with the three different methods.

The Square-set as a derived operator. Given any curve Y and a
point x on it, the following construction can be used to obtain a
geodesic line intersecting y at x orthogonally: find the tangent of
v at x; find its orthogonal direction in the tangent plane as above;
and finally trace the geodesic through x along such direction. This
procedure implements a further operation that we call Square-set,
which will be used as an atomic operation in the following.

4.4. Circle through three non-collinear points

In the plane, given three non-collinear
points a, b, c, this construction can be done
by first computing the perpendicular bisec-
tors of segment ab and bc; then intersect-
ing such two bisectors at point o; and finally
tracing the circle centered at o and through
a (and, consequently, through b and c). The same procedure triv-
ially gives the circle circumscribed to a triangle abc.

© 2021 The Author(s)
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Figure 7: Left: Perpendicular to line 'y through point x computed
by placing the square set at x: the tangent direction ty in TyS is
obtained with the Euclidean construction starting at the tangent of
vin TxS. Right: Line tangent to a circle centered at x and through a:
the square set is placed at a and oriented according to the tangent
of Yxa at a.

This construction relies on the fact that all points on a bisector
are equidistant from the endpoints of the input segment, a property
which is not fulfilled in the manifold case when the bisector is a
straight line. However, if the two bisectors are obtained as isolines
of the difference distance field, as described above, then their in-
tersection will indeed be equidistant from the three points, hence
we can use it as the center for a geodesic circle through them. See
Fig. 6 for a comparison of the two approaches.

4.5. Perpendicular to a line at a point

In the plane, let £ be a line and x a point on
it, we want to find a line through x and or-
thogonal to ¢. To this aim, it is sufficient to
trace any circle centered at x, finding its in-
tersections a,b with ¢, and then finding the
bisector of line segment ab.

While this construction can be used in
the manifold setting too, by resorting to the
construction described in Sec. 4.3, it is easier here to use the
Square-set, placing it at x and orienting it according to the tangent
of the support line at x.

The same construction can be used to find the tangent at a point
a to a circle centered at x and through a. This is in fact the per-
pendicular to segment ax and passing through a. Fig. 7 shows both
such constructions.

4.6. Perpendicular to a line through a point not on the line

In this case, point x lies outside ¢ and we
are again asked to find the perpendicular to
¢ through x. In the plane, we also trace a
circle centered at x, with an aperture larger
than its distance from ¢; we find the inter-
section points a,b of this circle with £ and
we trace other two circles centered at a and
b with the same aperture; by construction,
such circles intersect at x and at another point y; segment xy is or-
thogonal to ¢.
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Unfortunately, this construction cannot be used in the geodesic
setting, because the orthogonal projection of a point x onto a
geodesic Y will not be the midpoint of a segment intercepted on
v with a circle centered at x. We rather have to define the problem
in terms of distances, as finding the point z on 7y that minimizes
the distance from x. If we could find z, there is guarantee that the
geodesic path 7yy; meets y orthogonally at z, because it is a radial
path of the circle centered at x and tangent to y. But finding z seems
not possible without taking any measure. One possible workaround,
which however violates the rules of the straightedge and compass
framework, is to restrict the distance field dy to ¥ and finding its
minimum along it.

A similar problem, which poses the same challenge, is mirroring
a point x about a line not containing it. Once we have found the
perpendicular from x to the line, it is sufficient to trace a circle
centered at the projection z of z with aperture xz and then find the
intersection between such circle and the geodesic line extending xz.

4.7. Triangles

A triangle can be copied to another place ¢
with the same construction, both in the
planar and in the manifold setting. Let abc
be a triangle, ¢ a line and ¢’ a point on
£. We want to copy the triangle in such a 14

way that a goes to @', b goes to a point b’ a' b’
on ¢, and ¢ is placed at a point ¢’ accordingly. We first draw a cir-
cle with amplitude ab centered at ¢’ and we select a point b’ as
one of the two intersections of the circle with line ¢. Next we trace
two more circles, one with amplitude ac centered at @’ and another
with amplitude bc centered at b’; we select point ¢’ as one of the
intersections of such two circles. In the manifold setting, the re-
sult is a triangle with edges of the same length of abc, but nothing
can be said about its angles. Moving a triangle while preserving
the amplitude of its angles is inherently impossible in general, for
consequences of the Gauss-Bonnet theorem.

Creating an equilateral triangle is among the simplest construc-
tions: given an edge ab, intersect the two circles with radius ab and
centered at a and b, respectively. Any of their two intersections can
be chosen as the third vertex ¢ of the triangle. The same procedure
works in the manifold setting too, if we aim at obtaining a trian-
gle with three edges of the same length. This does not guarantee
any other of the properties of the equilateral triangles, e.g., having
three equal angles, having three equal heights that bisect the angles
and bisect the edges, etc. Constructions fulfilling even one of such
requirements seem not easy to obtain in the manifold setting.

Likewise, it is easy to build an isosce- c
les triangle on a basis ab with the diagonal
edges of a given length (transferred with the
compass from some given segment). Alter-
natively, one can build an isosceles triangle
of a given height, by first constructing the
perpendicular bisector of ab and then trans-
ferring the height on it with the compass.
Both such constructions work to some ex- ¢ b
tent in the manifold setting, too. However, the first construction will

a) b) <)

Figure 8: Equilateral triangle (a) and isosceles triangle obtained
by reproducing the Euclidean construction have three/two edges of
the same length (b). A triangle with vertex c lying on the perpen-
dicular bisector of the basis ab does not have any property in terms
of either edge or angle equalities (c).

not warrant anything about either equality of the angles at the ba-
sis, or the height from c to bisect ab. While the second construction
will just warrant the latter property, but neither that the diagonal
edges, nor that the angles at the basis are equal. In our GUI, we
implement a more practical, yet equivalent, variant of the first con-
struction: we consider the Isoline of points equidistant from a and
b, as in Section 4.3, and we let the user choose the length of the
sides by dragging point ¢ along such bisector.

Figure 8 shows examples of triangles on a surface, obtained with
the constructions described above.

The examples above demonstrate that when we deal with some
regular figure in the manifold setting, we cannot ask it to fulfill all
properties such regular figure has in the planar setting together. We
usually can ask it to have at most one property at a time, and the
construction and the result will be different depending on which
property we aim at fulfilling. More than that, it is not always clear
if and how some such properties can be obtained with a geometric
construction.

4.8. Squares and rectangles

A square can be built from one c d

of its edges ab as follows. A line <
perpendicular to ab and through
a is built first, as described in
Sec. 4.5. Then the the length of b al afs
ab is transferred to segment ad on

such a line by placing the needle point of the compass at a. Finally,
the needle point of the compass is placed at b and next at d with the
same aperture ab, and the intersection c of the two circles gives the
last vertex of square abcd.

This same construction works in the manifold setting too. How-
ever, the resulting polygon will have four edges of equal length, but
only angle dab is guaranteed to be a square angle. An alternative
construction consists of tracing perpendicular lines at both a and b,
transferring the length of ab on both of them, and connecting the
points ¢ and d obtained in this way. In this case, in the manifold set-
ting we obtain a quadrilateral with three edges of the same length,
namely ab, ad and bc, and two right angles dab and abc; but noth-

© 2021 The Author(s)
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(a) (b) (©

Figure 9: Rectangles obtained with different constructions: by
tracing two perpendicular lines Y and Y intersecting at a and trac-
ing opposite sides of the same length (a); by tracing two lines
and Y' perpendicular to y at a and b and setting points d and c
on Y and Y' at equal distance from a and b, respectively (b); by
tracing the diagonal ac, transferring angle bac to acd and tracing
two lines perpendicular to ab and cd at a and c, respectively (c).

ing can be said about the length of edge cd and the amplitude of
angles at ¢ and d.

The same constructions apply to draw a rectangle, except that the
aperture of the compass to obtain the vertical edges can be different
than the length of ab. The outcome in the manifold setting has the
analogous (lack of) properties.

We describe a third construction, Vi
which is more appropriate to the GUI
of drawing systems. Given a basis line
¢ and a point a lying on it, a diagonal
segment ac is traced first. Then the an- 14
gle between such segment and line ¢ is b
transferred at ¢, as described in Sec. 4.2, to obtain a line ¢’ parallel
to ¢. Finally, two lines are traced through a and ¢, which are per-
pendicular to £ and ¢', respectively. The intersections of such lines
with the first two lines give the other two vertices b and d of the
rectangle. This construction applies to the manifold setting, too, by
copying the angle in the tangent planes and using the square set to
trace perpendicular lines. However, the resulting quadrilateral has
two square angles at a and ¢, but nothing can be said on the ampli-
tude of the other two angles, and opposite edges are not congruent
in general. A number of other constructions can be devised, which
are all equivalent in the Euclidean setting, while none of them can
warrant congruent opposite edges and four right angles. Each such
construction privileges some of the properties of rectangles, at the
expense of others.

Fig. 9 shows examples of rectangles on a surface, obtained with
the constructions described above.

4.9. Regular polygons

The limitations about regularity are even more evident for poly-
gons with more edges. In the Euclidean setting, straightedge and
compass constructions of a k-gon are known for several values of
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k: given a circle, the length of the edge of a k-gon is obtained first,
which is then transferred repeatedly to the circle, and the dots are
eventually connected. All such constructions are based on the fact
that angles at the circle’s center of equal width define arcs of equal
length and chords of equal length.

All these constructions fail in the manifold setting, because the
relations between the amplitude of angles and the lengths of arcs
and chords no longer hold. More specifically, for no value of k it is
clear how to find a radius of the geodesic compass, such that if that
distance is transferred to a geodesic circle k times then the polygon
closes correctly. The following approximations is possible with the
tools in our arsenal, though. Define 6 to be 27“: this angle can be
found with straightedge and compass construction in the plane for
several values of, k, then transferred to the surface as in Sec. 4.2;
next transport such angle k— times to the tangent plane of the center
¢ of a given circle; trace the geodesics along the directions defining
the transported angles, until intersecting the circle; join the consec-
utive intersections with geodesic lines. The resulting polygon has
equal angles at the center, but in general it neither has equal edges,
nor equal internal angles; and his vertices do not define equal arcs
on the circle.

More in general, when defining the counterpart of a regular poly-
gon on a manifold, we need to clarify which properties such poly-
gon should have. It is not clear whether a k-gon with equal sides and
equal angles is even possible in the general case, due to the curva-
ture of the internal region. While a polygon with equal sides and
all its vertices of a geodesic circle is well defined, its construction
seems not trivial and not possible with our arsenal. Even a sim-
ple construction that splits a circle into k arcs of equal length and
then connects the dots requires measuring distances in the manifold
case, thus breaking the constraints of the straightedge and compass
framework.

4.10. Parallel lines

There are a number of constructions in the plane that deal with par-
allel lines. As a matter of fact, the concept itself of parallel lines
is ill-defined in the manifold setting. Given a point on x € S and a
direction #, on its tangent plane, e.g., the tangent of a geodesic line
Yx through x, this direction can be transported to a “parallel” direc-
tion ¢ lying in the tangent plane of any other point y € S. This is
done via parallel transport, a fairly complex differential geometry
operation that we have not considered in our preliminaries. Once
ty is given, we could trace the geodesic through y tangent to #, and
considering it a “parallel” to Yx. The trouble here is that the direc-
tion ty, will be different depending both on the starting point x that
we select on Yy, and on the trajectory that we choose to transport z.
Therefore, the result is not unique and it is somehow arbitrary.

A straightforward possibility it to take a reference line y and de-
fine a bundle of “parallel” lines as all those lines that intersect y
with a given angle. Given points xg,...,x, along Y and the refer-
ence angle, it is possible to use the construction in Sec.4.2 to trace
such parallel lines through the points x;.

Because of all such considerations, we leave a more thorough
study of parallel lines to the manifold setting as future work.
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Figure 10: The graphical user interface of our prototype system, with some geometric constructions obtained interactively on a meshes

consisting of 1M triangles (left) and about 350K triangles (right).

4.11. More constructions

There are several other constructions that are easy in the plane,
while it is not clear how they can be done in the manifold case:

e Tangents to a circle through an external point: the construction in
the plane is based on the fact that an angle at the circumference in
a half circle measures 7/2. As all constructions that relate angles
and lengths, this cannot be used in the manifold setting.

e Circle inscribed in a triangle: the construction in the plane is
based on the fact that all points in the bisectors of angles are
equidistant from the edges. This is no longer true in the manifold
case. On the other hand, it is not clear how the locus of points
that are equidistant from two edges — which is not a geodesic line
in general — can be constructed, unless the distance fields from
the edges are available (see also the discussion in Sec. 4.2).

5. Implementation

All the constructions described in the previous section, which apply
to the manifold setting, have been implemented by means of the
primitives defined in Sec. 3 and included in a prototype system,
which supports their interactive usage on high resolution meshes.
Note that, on a mesh M, any line is approximated with a polyline
containing one segment per crossed triangle. The primitives have
been implemented on top of a light data structure encoding meshes
[PNC19], as follows:

e Shortest-path: We use a variation of the algorithm proposed in
[XWO07]. The main feature of our method lies in its efficiency in
computing the initial guess: we extract a strip of triangles con-
necting the endpoints by navigating a dual graph on the mesh.
The navigation of such graph is optimized using well known
heuristics such as SLF and LLL [Ber98]. All the details about
the implementation and comparisons with state-of-the-art meth-
ods can be found in [MNPP21].

e Tangent: This is trivial if a point p lies inside a triangle, since the
plane containing the triangle coincides with the tangent plane. If
p lies on an edge, it is sufficient to unfold the incident triangles,
and compute a discrete approximation of the tangent at p of a
polyline consisting of two consecutive segments. If p is a vertex,
then the total angle about p on M is rescaled to 27 to map the
1-ring of p to the tangent plane; then the segments crossing the
triangles incident at p are mapped accordingly, and the same dis-
crete approximation is applied; the resulting direction is pulled
back to the mesh by an inverse rescaling of angles.

e Geodesic-tracing: We apply a straightforward implementation
of the straightest geodesics described in [PS98]. In practice, we
propagate a geodesic line across an edge e by flattening the two
triangles incident at e; and across a vertex v by rescaling its 1-
ring to the tangent plane, as above, and extending the incoming
direction on a straight trajectory with respect to such plane.

e Distance-field: We rely on a very efficient graph-based solver
described in [NPP21], which computes the distance field at all
vertices of M, or on the vertices of a desired region of interest.

e [soline: We linearly interpolate a field inside each triangle of M.
For each triangle 7, which crosses a given isovalue, the segment
of isoline crossing ¢ is computed independently.

e [ntersect: Lines on M are encoded as paths, each consisting of
a strip of triangles containing the line, together with parametric
coordinates on each edge crossing the strip, which are used to
encode the intersection points. Intersections between a pair of
lines can be found in linear time in the total number of triangles
in the corresponding paths. Each triangle intersecting one of the
paths is assigned a unique tag; next the triangles forming the
other path are scanned, and intersections are computed at tagged
triangles.

Our implementation can support interactive times on meshes up

to millions of triangles. All primitive operations and constructions
are supported via intuitive click-and-drag, which mimic the behav-

© 2021 The Author(s)
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Figure 11: Left: two straightest geodesics intersecting in more than
one point. Right: a geodesic circle with a radius greater than the
injectivity radius of its center is not diffeomorphic to its Euclidean
counterpart. The cusps (bottom) arise at the intersections of the
circle with the cut locus of its center.

ior of standard 2D drawing systems. Fig. 10 shows examples of
mesh drawing through the GUI of our system. A live session is
shown in the accompanying video.

6. Discussion

It follows from our analysis that the Geodesic-line and Geodesic-
compass alone are sufficient to port only few of the existing
straightedge and compass constructions to the manifold setting. We
extend the scope of constructions by allowing for a more extended
usage of the Distance-field operator, which can support construc-
tions that need the computation of midpoints and orthogonal lines.
These constructions already support several operations in the con-
text of interactive vector graphics on surfaces. A few relevant con-
structions, however, such as the projection of a point to a line and
the computation of a tangent to a circle through an external point,
are still not supported. Such operations may require explicit mea-
sures, e.g., finding the minimum of a distance field along a given
line, which are forbidden in the straightedge and compass frame-
work. This is not difficult to implement and integrate into our pro-
totype system, though.

A relevant limitation stems from the impossibility to warrant
the congruence of both lengths and angles together in tracing reg-
ular polygons. This limitation is intrinsic to the geodesic setting
and does not depend on the type of construction applied. This
fact makes regular tilings hardly applicable to manifold surfaces,
without introducing some modifications. Tilings can be addressed
by relaxing some conditions on the preservation of angles and/or
lengths, but it remains a challenging problem how to extend them
to large regions. This problem is tightly related to the design of
N-RoSy fields [VCD*17] and, in particular to the presence of field
singularities, which is a consequence of the Gauss-Bonnet theorem.

A possible avenue is to relax the constraint of lines to be straight,
in geodesic terms, trading some straightness for other properties.
This leads to the a concept of as-straight-as-possible lines under
given constraints, e.g., joining their endpoints with a prescribed
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length or with given tangent directions. Computing such lines en-
tails investigating Jacobi fields [PHD* 10, Le 19] and related opti-
mization problems.

A further challenge is extending our primitives to work on large
non-convex regions of the surface. In fact, even basic properties
of lines and circles are lost outside strongly convex regions, thus
bringing further issues. For example, geodesic lines could intersect
in more than one point, as shown in Figure 11, left. Similarly, since
circles has been defined as isolines of geodesic distance fields, be-
yond the cut loci of their centers they will no longer be diffeomor-
phic to their Euclidean counterparts (Figure 11,right). Some oper-
ations, including all primitives that can be computed with distance
fields, as well as an extension of Bézier surfaces, have been ad-
dressed already in [MNPP21, NPP21]. We plan to address the re-
maining issues in our future work.
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