
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

b/Surf: Interactive Bézier Splines
on Surface Meshes

Claudio Mancinelli, Giacomo Nazzaro, Fabio Pellacini, and Enrico Puppo

Abstract—We present a practical framework to port Bézier curves to surfaces. We support the interactive drawing and editing of Bézier
splines on manifold meshes with millions of triangles, by relying on just repeated manifold averages. We show that direct extensions of
the de Casteljau and Bernstein evaluation algorithms to the manifold setting are fragile, and prone to discontinuities when control
polygons become large. Conversely, approaches based on subdivision are robust and can be implemented efficiently. We implement
manifold extensions of the recursive de Casteljau bisection, and an open-uniform Lane-Riesenfeld subdivision scheme. For both
schemes, we present algorithms for curve tracing, point evaluation, and approximated point insertion. We run bulk experiments to test our
algorithms for robustness and performance, and we compare them with other methods at the state of the art, always achieving correct
results and superior performance. For interactive editing, we port all the basic user interface interactions found in 2D tools directly to the
mesh. We also support mapping complex SVG drawings to the mesh and their interactive editing.

Index Terms—geometric meshes, spline curves, user interfaces, geometry processing.

F

1 INTRODUCTION

V ECTOR graphics in 2D is consolidated since decades, as
is supported in many design applications, such as Adobe

Illustrator [1], and languages, like Scalable Vector Graphics (SVG)
[2]. Bézier curves are the building blocks of most vector graphics
packages, since most other primitives can be converted into Bézier
splines (chains of Bézier curves) and edited as such [3].

In many design applications, it would be beneficial to edit vector
graphics directly on surfaces, instead of relying on parametrization
or projections that have inherent distortions [4], [5]. Yet, bringing
vector graphics to surfaces is all but trivial, since basic rules of
Euclidean geometry do not hold under the geodesic metric on
manifolds; and distances, shortest and straightest paths cannot
be computed in closed form. In particular, in spite of several
attempts to define curves under the geodesic metric, a complete
computational framework that supports their practical usage in an
interactive design setting is still missing.

In this work, we present the first practical method, which
supports the interactive and robust design and editing of Bézier
splines on high resolution meshes, without any limitation on the
position of their control points. For the sake of simplicity, we
restrict our study to cubic Bézier curves. Our contributions tackle
different aspects of the problem, as outlined in the following.

Curve schemes in the manifold setting (Sec. 3): To the
best of our knowledge, all existing extensions of Bézier curves
to the manifold setting have been proven to work just “in the
small”, i.e., when control points are sufficiently close to one another.
However, such limitation is incompatible with a practical usage. We
show that, indeed, the manifold extensions of the de Casteljau and

• Claudio Mancinelli and Giacomo Nazzaro are joint first authors.
• Claudio Mancinelli and Enrico Puppo are with the Department of

Informatics, Bioengineering, Robotics and Systems Engineering of the
University of Genoa, Genoa, Italy.
E-mail: enrico.puppo@unige.it, claudio.mancinelli@dibris.unige.it

• Giacomo Nazzaro and Fabio Pellacini are with the Department of Computer
Science of Sapienza University of Rome, Rome, Italy.
E-mail: {nazzaro, pellacini}@di.uniroma1.it

Manuscript received December XX, 2021; revised XXXXXX.

Bernstein evaluation algorithms may fail and lead to discontinuous
curves for general sets of control points. On the other hand, we
show that some existing subdivision schemes may be generalized
to manifolds “in the large”, too. We show that the recursive de
Casteljau (RDC) subdivision scheme proposed by Noakes [7]
indeed works for any set of control points, always producing C1

curves. And we propose a manifold extension of an open-uniform
Lane Riesenfeld (OLR) subdivision scheme; we elaborate on results
of Duchamp et al. on the manifold extension of the standard Lane
Riesenfeld scheme for B-splines [8], to show that our OLR scheme
is the first one to produce C2 Bézier segments in the manifold
setting. Curves from both the RDC and the OLR schemes can be
joined with C1 continuity to form Bézier splines.

Algorithms (Sec. 4): We provide the basic tools for curve
design and rendering with the RDC and OLR subdivision schemes.
To the best of our knowledge, all previous proposals in the manifold
setting provided only algorithms for curve tracing, i.e., to produce
a discrete approximation of the curve. Besides such algorithms, we
give the algorithms for evaluating the curve at a given parameter;
and for splitting a curve at a given point, by approximating a single
Bézier segment with a spline of two segments.

Computational framework and system (Sec. 5): While
the curve schemes and related algorithms are defined on smooth
manifolds, our implementation addresses triangulated surfaces. As
remarked by Wallner and Pottmann [9], “after discretization the
question of smoothness does no longer make sense in the strict
mathematical sense. Even so, it is important to know that ... the
ideal geometric object one tries to approximate is smooth.” All our
algorithms rely on the computation of repeated manifold averages,
which involve finding geodesic shortest paths. Such computations
are known to converge to the equivalent measures in the smooth
setting as the geometric mesh is refined, e.g., through subdivision
[10]. In order to target meshes with millions of triangles, we need
a very efficient framework for geodesic computations. We develop
an algorithm for computing locally shortest paths that is robust and
beats the performances of the other methods at the state of the art.
In particular, we greatly improve the step to find an initial guess,

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. We propose algorithms to interactively edit Bézier splines on large meshes, including curve editing, curve transformations and import and
editing complex SVG drawings. All computations occur in the intrinsic geodesic metric of the surface. All splines in this figure have been drawn
interactively. Control points and tangents of curves under editing are shown in the zoomed insets. Asian Dragon ∼7.2M triangles; Nefertiti ∼500K
triangles.

which is the bottleneck of all local methods.
We integrate our algorithms in a user interface, thus providing

the first prototype system that supports the robust interactive design
of Bèzier splines on manifold meshes for any choice of control
points. We support all basic operations that 2D editors have,
including: click-and-drag of control points and tangents; point
insertion and deletion; and translation, rotation and scaling of
curves. We also support mapping of 2D SVG drawings onto the
surface. Fig. 2 shows the interface of our system with some simple
curves traced on a model. The supplemental video shows a full
editing session. Our system remains interactive on meshes made of
millions of triangles, such as the ones shown in Fig. 1.

Assessment and comparisons (Sec. 6): To assess the
robustness and performance of our algorithms, we trace curves on
the more than five-thousands watertight, manifold, meshes of the
Thingi10k repository [11] with one hundred randomly generated
control polygons for each mesh. Our algorithms handle all cases
well. We discuss the sensitivity of our algorithms to the input mesh,
and how to deal with critical meshes containing nearly degenerate
triangles. We run an extensive comparison to the methods at the
state of the art, in terms of both robustness and time performance,
consistently beating their results.

2 RELATED WORK

The design of spline curves on manifolds has been addressed by
several authors, both from a mathematical and from a computational
perspective. We review only methods addressing general surfaces.

A traditional approach to circumvent the problems of the
Riemannian metric consists of linearizing the manifold domain
via parametrization, designing curves in the parametric plane, and
mapping the result to the surface. Parametrization introduces seams,
and drawing lines across them becomes problematic. Moreover,

Fig. 2. The GUI of our system. Curves on the eye and on the arm consist
of a single cubic segment each, while the two splines on the ears consist
of two cubic segments each, with a sharp corner to the left and smooth
junction to the right. A control tangent (in blue) is depicted on the curve
under editing.

distortions induced by parametrizations are hard to predict and
control. The exponential map can provide a local parametrization
on the fly for the region of interest [12], [13], [14], [15], [16].
However, its radius of injectivity can be small (e.g., in regions of
high curvature), while control polygons and curves may extend over
large regions. Even curves as simple as the ones depicted in Fig. 3
may be hard to control using either local or global parametrizations.

As reported in [9], another common approach consists of re-
laxing the manifold constraint, resolving the problem in Euclidean

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 3. Curves that wind about the object or require large control polygons
may be challenging to draw with an approach based on parametrization.
The collar and the curl consist each of a single cubic segment, while
the spiral is a spline of four segments joined with smooth (C1) continuity.
Control polygons are depicted in blue.

space, and projecting the result back to the surface. Panozzo et al.
[17] use an embedding in a higher-dimensional Euclidean space,
followed by Phong projection. These methods may support user
interaction, but they provide only approximate results, are prone to
artifacts, and are hard to scale to large meshes.

The design of curves can also be addressed as an optimization
problem in a variational setting. Noakes et al. [18] and Camarinha et
al. [19] provide the basic variational theory of splines on manifolds.
This approach is adopted in several other papers [20], [21], [22],
[23], [24], [25], [26]. While most such works do not address
implementation and performance, [23] and [24] eventually resort
to projection methods. Overall, the variational approach is too
computationally expensive to support user interaction on large
meshes. Moreover, these curves are harder to control interactively
than traditional Bézier splines.

Concerning the specific case of Bézier curves, Park and Ravani
[27] first extended the de Casteljau algorithm to Riemannian
manifolds, without developing the computational details. Later
on, the de Casteljau algorithm on surfaces has been explored by
several other authors [22], [28], [29], [30], [31]. Among these,
Morera et al. [29] extend the recursive de Casteljau bisection, and
Sharp et al. [32] achieve interactive performance on the same
algorithm, by using a fast method for evaluating locally shortest
geodesic paths [33]. We adopt the same structure of [29] for
curve tracing with the recursive de Casteljau (RDC) subdivision.
In Section 6.3, we further discuss the method of [32], [33] and
compare their results and performances with our method. Absil et
al. [34] define Bézier curves both with the de Casteljau algorithm
and with the Riemannian center of mass (RCM), and show that they
may produce different results. A method for the direct computation
of the RCM through gradient descent has been proposed in [35],
which is computationally intensive, though. Conversely, the method
proposed in [17] is very efficient (after pre-processing), but provides
just an approximation of the RCM. In Section 6.3, we compare to
both such methods in terms of robustness and performance.

Several authors have investigated the theoretical aspects of the
subdivision approach to splines in the manifold setting. We refer
to Wallner [36] for a detailed analysis, reporting just the results
most relevant to our work. Noakes [7] proves that the recursive de
Casteljau subdivision converges and produces a C1 curve in the

cubic case, subject to strong constraints on the control polygon.
Most recent results [8], [37], [38] focus on Lane-Riesenfeld
schemes and show that a scheme of order k is convergent and
Ck in the manifold and functional settings. These latter works
motivate our approach to the open-uniform Lane-Riesenfeld (OLR)
subdivision. We exploit observations reported in [36] to show that
such schemes can be generalized to work on any control polygon.

3 BÉZIER CURVES ON MANIFOLDS

We consider different constructions of Bézier curves, all of which
produce the same curves in the Euclidean setting, and we analyze
their extensions to the manifold setting. We provide just the basics
of each construction, referring the reader to [3], [39] for further
details. We assume the reader to be familiar with the geodesic
metric on manifolds; details can be found in any book about
Riemannian geometry [40]. All definitions are given in general,
while results are given just for cubic Bézier curves, for the sake of
simplicity; extensions to curves of a different order are just outlined.
In the following, we will denote with M a smooth, compact and
connected surface embedded in R3, endowed with the Riemannian
metric induced by the embedding.

3.1 Preliminaries and notations
In the Euclidean setting, a Bézier curve is the image of a polynomial
parametric function of degree k

bk : [0,1]−→ Rd ,

which is defined by means of a control polygon Π = (P0, . . . ,Pk),
where all Pi ∈ Rd . Curve bk interpolates points P0 and Pk, and it
is tangent to Π at them. All constructions of Bézier curves in the
Euclidean setting rely on the computation of affine averages of
points of the form

P̄ =
h

∑
i=0

wiPi (1)

where the wi are non-negative weights satisfying the partition of
unity. For h = 1, the affine average reduces to linear interpolation

P̄ = (1−w)P+wQ. (2)

By analogy with the Euclidean setting, a control polygon Π in the
manifold setting consists of a polyline of shortest geodesic paths,
connecting the control points that lie on M.

Affine averages are not available on manifolds, but they can be
substituted with the Riemannian center of mass [41], [42]. Given
points P0, . . . ,Ph ∈M and weights w0, . . . ,wh, their Riemanninan
Center of Mass (RCM) on M is defined

RCM(P0, . . . ,Ph;w0, . . . ,wh) = argmin
P∈M

h

∑
i=0

wid(P,Pi)
2 (3)

where d(·, ·) is the geodesic distance on M. If M is a Euclidean
space, then the solution to Eq. 3 is the usual affine average of Eq. 1.

The RCM requires that Eq. 3 has a unique minimizer. Karcher
[42] provides a condition of existence and uniqueness of the
solution, which requires all points Pi to be contained inside a
strongly convex ball, whose maximum radius depends on the
curvature of M. In the following, we will refer to this condition
as the Karcher condition. If such condition is satisfied, then the
RCM is smooth in both the Pi’s and the wi’s [43]. Unfortunately,
the Karcher condition restricts the applicability of the RCM to
relatively small neighborhoods in the general case.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

P<latexit sha1_base64="l2tjlnnzHME+mgWu532MzCvSlyA=">AAACmHicZVFLb9NAEN6YVwmPtnCDi4UvCJXIDkhwjAAJOESkiLSVsla03oydVfZh7Y5boa0PnLnCj+PfsA454HYOu99+89pvpqilcJimfwbRjZu3bt/Zuzu8d//Bw/2Dw0cnzjSWw5wbaexZwRxIoWGOAiWc1RaYKiScFpv3nf/0HKwTRn/D7zXkilValIIzDNTxbHmQpKN0a/F1kO1AQnY2Wx4OftCV4Y0CjVwy5xZZWmPumUXBJbTDIW0c1IxvWAWeKacYro/CXRqNru9eNFi+zb3QdYOgeefUcMGNUkyv6NR72iVzJuNp2/Z8FhzaxTj3fhjHVEKJI7oBq19S3Ui5CuNQAoPs0AjiEJJk3UnP6zXTaJSnhagu2y1nRbXGy6VPxtt31+gDBGUWpqH5lxosQ2NfeMpspYRug9KKHnWop7T7KRojXZ8uChXK/q+5ZrYUUuY+ALcR9ZUyjURhzUVgHYRt6grXnoZQoVdh4q0Pw27D0rKrK7oOTsaj7NVofPw6mbzbrW+PPCXPyHOSkTdkQj6RGZkTToD8JL/I7+hJNIk+Rp//hUaDXc5j0rPo61/gWMwv</latexit>

Q0
<latexit sha1_base64="4C4iq6C4eAlr7CQKcdUnaTtBxVY=">AAACmXicZVFLb9QwEPaGV1leLRx7icgBhMoqWZDaY3kcKqQVLbBtpXW0cryTrLV+RPakFXJz4M4V/hv/BmfZA2nnYH/+5uVvpqilcJimfwbRrdt37t7buj988PDR4yfbO09PnWkshyk30tjzgjmQQsMUBUo4ry0wVUg4K1YfOv/ZBVgnjP6G32vIFau0KAVnGKgvJy/m20k6StcW3wTZBiRkY8fzncEPujC8UaCRS+bcLEtrzD2zKLiEdjikjYOa8RWrwDPlFMPlXrhLo9H13bMGy4PcC103CJp3Tg2X3CjF9IJOvKddMmcynrRtz2fBoZ2Nc++HcUwllDiiK7D6NdWNlIswDyUw6A6NIA4hSdad9KJeMo1GeVqI6qpdc1ZUS7ya+2S8fneNPkJQZmESmn+uwTI09pWnzFZK6DYoreheh3pKu5+iMdL16aJQoez/mmtmSyFl7gNwK1FfK9NIFNZcBtZBWKeucOlpCBV6ESbe+jDsNiwtu76im+B0PMrejMYnb5PD95v1bZFd8py8JBnZJ4fkiByTKeGkJD/JL/I72o3eRUfRp3+h0WCT84z0LPr6F15szGE=</latexit>

Fig. 4. The cut locus C(P) of a point P on a torus (red). For a point Q′ on
C(P) there exist two different shortest geodesics joining P to Q′ (green).

For any two points P,Q∈M, which are connected with a unique
shortest path γP,Q with γ(0) = P and γ(1) = Q, their RCM with
weights (1−w) and w is always defined and lies at γP,Q(w). This
provides the analogous of the affine average of Eq. 2 for pairs of
points that do not lie on each other’s cut locus [9].

3.2 Extension of the weighted average
Figure 4 shows an example of cut locus of a point P lying on a
torus. If point Q lies on the cut locus of P, then there is ambiguity
on which shortest path should be taken to compute their average.
We extend the pairwise average to the cut locus, too, by picking one
arbitrary, but deterministically selected, shortest path connecting P
to Q. We thus define the manifold average between two points

A : M×M× [0,1]−→M; (P,Q;w) 7→ γP,Q(w) (4)

where γP,Q is a (deterministically selected) shortest geodesic path
joining P to Q. We have that A (P,Q;w) = RCM(P,Q;(1−w),w)
as long as P and Q do not lie on each other’s cut locus; while at the
cut locus it returns a point, which depends on the selected shortest
path γP,Q. The averaging operator of Eq. 4 provides the analogous
of Eq. 2 in the manifold setting for any pair of points.

Notice that, the operator A remains smooth everywhere in its
w parameter, but it fails to be continuous at pairs (P,Q) ∈M×M
that lie on each other’s cut locus. Such a discontinuity may affect
the manifold constructions, as we will see in the following.

3.3 de Casteljau point evaluation
The de Casteljau construction provides a recursive definition, which
evaluates a Bézier curve as bk(t) = bk

0(t), where

b0
i (t) = Pi

br
i (t) = (1− t)br−1

i (t)+ tbr−1
i+1 (t)

(5)

for r = 1, . . . ,k and i = 0, . . . ,k− r. A curve is traced by computing
Eq. 5 for t varying in [0,1].

This construction can be extended to the manifold setting in
a straightforward way by substituting the affine averages between
pairs of points with the manifold average A defined above. This
extension was proposed first by Park and Ravani [27]. As shown
by Popiel and Noakes [31], if all consecutive pairs of points
in the control polygon Π lie in a totally normal ball, then the
resulting curve is smooth. However, if the constraint is violated,
the resulting curve can be discontinuous. In fact, even if all shortest
geodesics paths in Π are unique, some pairs of intermediate points
involved in the construction may lie on each other’s cut locus, for
some value of the parameter t. As t passes such critical value, the
manifold average A returns a discontinuous result, thus causing a
discontinuity in the curve. Fig. 5(top) illustrates the construction
near failure points; Fig. 6(a) provides another example of failure
on a more complex shape.

Fig. 5. Top: example of a failure case of direct de Casteljau evaluation.
The black bullets at the discontinuities correspond to consecutive param-
eter values near a critical value, and the blue/purple/pink lines provide the
de Casteljau construction. Note how the pink line jumps from one side of
the pole to the other as t passes critical values, causing discontinuities.
Bottom: our method always produces a smooth curve regardless of the
positioning of the control points. The same control polygon of the top
figure generates the curve in the center; dragging the handles we may
force the curve to pass behind the pole (left) or further shrink (right). Note
how the control polygon to the right also switches to the front of the pole,
while leaving the smoothness of the curve unaffected.

3.4 Bernstein point evaluation with the RCM
A Bézier curve can be evaluated in closed form as an affine sum of
all its control points:

bk(t) =
k

∑
i=0

Bk
i (t)Pi (6)

where the Bk
i (t) are the Bernstein basis polynomials of degree k

Bk
i (t) =

(
k
i

)
t i(1− t)n−i.

This expression can be rewritten for the manifold case as

bk(t) = RCM(P0, . . . ,Pk;Bk
0(t), . . . ,B

k
k(t)) (7)

where the Riemannian center of mass RCM has been defined
in Eq. 3. Again, a curve is traced by computing Eq. 7 for t
varying in [0,1]. This construction was addressed in [17], where
an approximation of the RCM is proposed, which is based on
an embedding in a higher dimension and Phong projection (see
Sec. 6.3 for further details). A direct evaluation of the RCM is also
possible through gradient descent on the energy of Eq. 3. A method
has been proposed in [35], which requires computing a log map at
each iteration, though.

If the control points are close enough to fulfill the Karcher
condition, then the resulting curve is smooth, since both the RCM
and the Bernstein polynomials are smooth. However, if the Karcher
condition is not fulfilled, then the energy in Eq. 3 is no longer
guaranteed to be convex, and it might even have infinitely many
minima. In this case, the curve may be undetermined at some
intervals. Fig. 6(b) provides an example of failure, where the RCM
has been computed directly by gradient descent. Note that, the
failure is independent of the method used to implement the RCM,
being intrinsic to the non-convexity of the energy for some values
of the weights. More examples of failure for the method of [35]
and for the approximation of [17] are demonstrated in Section 6.3.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 6. An example of failure in tracing a curve with the direct de Casteljau
(top-left), and the RCM evaluation (top-right). The same control polygon
gives two smooth and nearly identical curves with the Recursive de
Casteljau (bottom-left) and the Open-uniform Lane-Riesenfeld schemes
(bottom-right) described in Sections 3.5 and 3.6, respectively.

3.5 Recursive de Casteljau subdivision (RDC)

One step of the de Casteljau construction subdivides polygon Π into
two control polygons ΠL and ΠR. See Fig. 7 (RDC) for an example.
The junction point of ΠL and ΠR lies on the curve. The recursive
application of this procedure for t = 1/2 defines a sequence of
subdivision polygons Πn

DC, which converges to the Bézier curve.
In the manifold setting, this algorithm produces a curve, which

is different from the one obtained with the direct evaluation by
varying the value of parameter t, as reviewed in Sec.3.3. This
scheme in the manifold setting was studied first by Noakes [7], and
implementations were proposed in [29], [32]. Noakes proved that
this subdivision converges to a C1 limit curve, provided that the
initial control points lie in a convex set [7]. We extend this result
to any set of control points.

Proposition 3.1. For any given control polygon Π= (P0,P1,P2,P3),
the RDC subdivision implemented with the A operator converges
to a limit curve that is C1 continuous.

Proof. As observed by Wallner [36] (Sec. 2.4), a result “in the
small” can be generalized to any control polygon, if the control
points in the sequence of subdivided polygons become sufficiently
close after a finite number of subdivisions. This is straightforward
from the following two facts:

1) the RDC scheme always satisfies the contractivity property,
in particular, the greatest distance between two consecutive
points of Π

n+1
DC is not greater than half the greatest distance

between two consecutive points in Πn
DC. This property depends

only on the triangular inequality of the geodesic distance
function, which holds everywhere, including at the cut locus.

2) On a compact manifold of bounded curvature there exists
δ > 0 s.t. every ball of radius r ≤ δ is convex [44].

Therefore, in a finite number of subdivision steps, we obtain a
sequence of control polygons such that each of them is contained
in a convex set, hence undergoes the hypothesis of [7]. Moreover,
by construction, every two consecutive segments have the same

RDC

P0
<latexit sha1_base64="DmyI5jIl/o2Qe+ONBU9XkPhN8LQ=">AAAChXicZVHLbtQwFPWER0t4tbBkE5ENQu0oGSrojgpYsBkxSExbaRyNHM9NYsUv2U4r5OYX2MKv8Tc4wywIvQv7+JxrX597S82ZdVn2exLduXvv/t7+g/jho8dPnh4cPju3qjMUllRxZS5LYoEzCUvHHIdLbYCIksNF2X4c9IsrMJYp+c1911AIUktWMUrcQC3WWbw+SLNpto3kNsh3IEW7WKwPJy3eKNoJkI5yYu0qz7QrPDGOUQ59HOPOgia0JTV4IqwgrjkKe6Wks2N51bnqtPBM6s6BpIMo4ZoqIYjc4Ln3eLhMCU/mfT/SDFhnVrPC+zhJMIfKTXELRh5j2XG+CR0RzAXnoRAkISXNhxVf6YZIp4THJatv+i1nWN24m7VPZ9vzUOgTBGcG5qH4Fw2GOGVee0xMLZjsg9MaHw1o5HT4qVOK2zFdliI8+69nTUzFOC98ALZlOuRbCKOTtWs8DiSTm9Db3oe29mE8+f/DuA3OZ9P8zXT29SQ9+7Ab1D56gV6iVyhH79AZ+owWaIkoatAP9BP9ivai4+gkevs3NZrs7jxHo4je/wEeDsNo</latexit>

P3
<latexit sha1_base64="p4pDNsB++nB0bU+IbNzJvIw06jA=">AAAChXicZVHLbtQwFPWER0t4tIUlm4hsEGpHybQCdlTAgs2IQWLaSuNo5HhuEit+yXaKkJtfYAu/xt/gDLMg9C7s43OufX3uLTVn1mXZ70l05+69+3v7D+KHjx4/OTg8enphVWcoLKniylyVxAJnEpaOOQ5X2gARJYfLsv0w6JfXYCxT8qv7rqEQpJasYpS4gVqsT+P1YZpNs20kt0G+AynaxWJ9NGnxRtFOgHSUE2tXeaZd4YlxjHLo4xh3FjShLanBE2EFcc1x2CslnR3Lq85VbwvPpO4cSDqIEr5RJQSRGzz3Hg+XKeHJvO9HmgHrzGpWeB8nCeZQuSluwcgTLDvON6EjgrngPBSCJKSk+bDia90Q6ZTwuGT1Tb/lDKsbd7P26Wx7Hgp9hODMwDwU/6zBEKfMK4+JqQWTfXBa4+MBjZwOP3VKcTumy1KEZ//1rImpGOeFD8C2TId8C2F0snaNx4FkchN62/vQ1j6MJ/9/GLfBxWyan05nX87S8/e7Qe2j5+gFeoly9Aado09ogZaIogb9QD/Rr2gvOonOotd/U6PJ7s4zNIro3R8ka8Nr</latexit>

P1
<latexit sha1_base64="VQoXtdjf4y+NOezbKBMV1kcmRDU=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpV0gXBCa2AA5eKIujuSnVUOe4kteKPyJ4sQt78BK7w2/g3OKUHws7Bfn5v7PGbKRopHKbp71F04+atg9uHd8Z3791/8PDo+NGZM63lsORGGntRMAdSaFiiQAkXjQWmCgnnRf2+188vwTph9Ff83kCuWKVFKTjDQH1ZrLP1UZJO013E10G2BwnZx2J9PKrpxvBWgUYumXOrLG0w98yi4BK68Zi2DhrGa1aBZ8ophttJ2Euj0Q3lVYvlm9wL3bQImveihm/cKMX0hs69p/1lzmQ877qBZsGhXc1y78dxTCWUOKU1WP2C6lbKTWiIEhiMh0IQh5Qk61d62WyZRqM8LUR11e04K6otXq19Mtud+0IfIDizMA/FPzVgGRr73FNmKyV0F5xWdNKjgdP+p2iMdEO6KFR49l/PDbOlkDL3AbhaNCHfQZicrnDraSCF3oTedj60tQvjyf4fxnVwNptmJ9PZ55fJ6bv9oA7JE/KUPCMZeU1OyUeyIEvCSUV+kJ/kV3QQTaKT6NXf1Gi0v/OYDCJ6+wfkkMNV</latexit>

P2
<latexit sha1_base64="WCyDzOnpCHjHtxr0wAU3T46/Cbk=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpVkgXBCa2AA5eKIujuSnVUOe40teKPyJ4sQt78BK7w2/g3OKUHws7Bfn5v7PGbKRspHKbp71F04+atg9uHd8Z3791/8PDo+NGZM63lsOBGGntRMgdSaFigQAkXjQWmSgnnZf2+188vwTph9Ff83kChWKXFRnCGgfoyX+WroySdpruIr4NsDxKyj/nqeFTTteGtAo1cMueWWdpg4ZlFwSV04zFtHTSM16wCz5RTDLeTsG+MRjeUly1u3hRe6KZF0LwXNXzjRimm13TmPe0vcybjWdcNNAsO7TIvvB/HMZWwwSmtweoXVLdSrkNDlMBgPBSCOKQkWb/Sy2bLNBrlaSmqq27HWVFt8Wrlk3x37gt9gODMwiwU/9SAZWjsc0+ZrZTQXXBa0UmPBk77n6Ix0g3pslTh2X89N8xuhJSFD8DVogn5DsLkdIVbTwMp9Dr0tvOhrV0YT/b/MK6Ds3yanUzzzy+T03f7QR2SJ+QpeUYy8pqcko9kThaEk4r8ID/Jr+ggmkQn0au/qdFof+cxGUT09g/mrsNW</latexit>

b1
0

<latexit sha1_base64="kRYkiFCeoIEFlyFin7B/+0zBEuU=">AAACjXicZVFNbxMxEHWWrxI+2sKRS8ReECrRbgqCA0IVILWXiCKRtlK8RF5nsrHWX7Jni5C7f4Mr/C3+Dd6QA0vnYD+/GXv83pRWCo9Z9nuQ3Lh56/adnbvDe/cfPNzd23905k3jOMy4kcZdlMyDFBpmKFDChXXAVCnhvKw/dPnzS3BeGP0Fv1soFKu0WAnOMFKUlkYuQ9kusq/5Yi/NxtkmRtdBvgUp2cbpYn9Q06XhjQKNXDLv53lmsQjMoeAS2uGQNh4s4zWrIDDlFcP1QdxXRqPvp+cNrt4UQWjbIGjeJTV840Ypppd0GgLtLnMmR9O27eUceHTzSRHCcDSiElY4pjU4/YLqRspldEYJjA7ERjCKJWnerfTSrplGowItRXXVbjgnqjVeLUI62Zy7Rh8hKnMwjc0/WXAMjXseKHOVErqNSit60KGe0u6naIz0fbosVXz2X82WuZWQsggR+FrYWO8hjlBXuA40kkIvo7dtiLa2cTz5/8O4Ds4m4/xwPPn8Mj16vx3UDnlCnpJnJCevyRE5IadkRjix5Af5SX4lu8mr5G3y7m9pMtjeeUx6kRz/AeXOx0Q=</latexit>

b<latexit sha1_base64="g4Cka2xt9qpAHxE1hEOvkIyPwMQ=">AAACiXicZVFNb9QwEPWGr7Llo4Ujl4hcECqrZItE1VNFOXBZUSS2XWkdrRxnkrXij8ietEJu/gRX+GP8G5xlDyydg/383tjjN1O0UjhM09+j6N79Bw8f7T0e7z95+uz5weGLS2c6y2HOjTR2UTAHUmiYo0AJi9YCU4WEq6I5H/Sra7BOGP0Nv7eQK1ZrUQnOMFALWhhZ+qJfHSTpJN1EfBdkW5CQbVysDkcNLQ3vFGjkkjm3zNIWc88sCi6hH49p56BlvGE1eKacYrg+CntlNLpdedlhdZJ7odsOQfNB1HDDjVJMl3TmPR0ucybjWd/vaBYc2uU0934cx1RChRPagNXvqO6kLENXlMDgPhSCOKQk2bDS63bNNBrlaSHq237DWVGv8Xblk+nmPBT6BMGZhVko/qUFy9DYt54yWyuh++C0pkcD2nE6/BSNkW6XLgoVnv3Xc8tsJaTMfQCuEW3IdxDGp2tcexpIocvQ296Htg7jyf4fxl1wOZ1kx5Pp1/fJ2cftoPbIK/KavCEZ+UDOyGdyQeaEE0l+kJ/kV7QfZdFJdPo3NRpt77wkOxGd/wHiqsX+</latexit>

b2
0

<latexit sha1_base64="uVhvrwNUFzL2qBuP07bdnUqi2b0=">AAACjXicZVHLbtQwFPWEVxkebWHJJiIbhMooSUGwQKgCpHYzokhMW2kcRo5zk7Hil2ynCLn5DbbwW/wNzjALQu/CPj732tfn3FJzZl2a/p5EN27eun1n5+703v0HD3f39h+dWdUZCguquDIXJbHAmYSFY47DhTZARMnhvGw/DPnzSzCWKfnFfddQCNJIVjNKXKAwLhWvfNmv0q/5ai9JZ+km4usg24IEbeN0tT9pcaVoJ0A6yom1yyzVrvDEOEY59NMp7ixoQlvSgCfCCuLWB2GvlXR2nF52rn5TeCZ150DSISnhG1VCEFnhufd4uEwJj+d9P8oZsM4s88L7aRxjDrWb4RaMfIFlx3kVnBHMBQdCI4hDSZINK77UayKdEh6XrLnqN5xhzdpdrXySb85Do48QlBmYh+afNBjilHnuMTGNYLIPSht8MKCR0uGnTilux3RZivDsv5o1MTXjvPAB2JbpUG8hjFA2bu1xIJmsgre9D7b2YTzZ/8O4Ds7yWXY4yz+/TI7ebwe1g56gp+gZytBrdIRO0ClaIIo0+oF+ol/RbvQqehu9+1saTbZ3HqNRRMd/AOfsx0U=</latexit>

b1
1<latexit sha1_base64="VyRlp3svealJEIEX7m1aM3wyiDE=">AAACjXicZVFNbxMxEHWWrxI+2sKRy4pcECrRbgqCA0IVILWXiCKRtlK8RF5ndmOtv2TPFiF3/wZX+Fv8G7whB0LnYD+/GXv83pRWCo9Z9nuQ3Lh56/adnbvDe/cfPNzd23905k3rOMy4kcZdlMyDFBpmKFDChXXAVCnhvGw+9PnzS3BeGP0Fv1soFKu1qARnGClKSyOXoewW+dd8sTfKxtk60usg34AR2cTpYn/Q0KXhrQKNXDLv53lmsQjMoeASuuGQth4s4w2rITDlFcPVQdwro9Fvp+ctVm+KILRtETTvkxq+caMU00s6DYH2lzmT6bTrtnIOPLr5pAhhmKZUQoVj2oDTL6hupVxGZ5TA6EBsBGksGeX9Si/timk0KtBS1FfdmnOiXuHVIowm63Pf6CNEZQ6msfknC46hcc8DZa5WQndRaU0PerSltP8pGiP9Nl2WKj77r2bLXCWkLEIEvhE21nuII9Q1rgKNpNDL6G0Xoq1dHE/+/zCug7PJOD8cTz6/HB293wxqhzwhT8kzkpPX5IickFMyI5xY8oP8JL+S3eRV8jZ597c0GWzuPCZbkRz/Aefux0U=</latexit>

b2
1<latexit sha1_base64="rOgSCXjq4cdQJJHeWH7y+PiJkjo=">AAACjXicZVHLbtQwFPWEVxkebWHJJiIbhMooSUGwQKgCpHYzokhMW2kcRo5zk7Hil2ynCLn5DbbwW/wNzjALQu/CPj732tfn3FJzZl2a/p5EN27eun1n5+703v0HD3f39h+dWdUZCguquDIXJbHAmYSFY47DhTZARMnhvGw/DPnzSzCWKfnFfddQCNJIVjNKXKAwLhWvfNmvsq/5ai9JZ+km4usg24IEbeN0tT9pcaVoJ0A6yom1yyzVrvDEOEY59NMp7ixoQlvSgCfCCuLWB2GvlXR2nF52rn5TeCZ150DSISnhG1VCEFnhufd4uEwJj+d9P8oZsM4s88L7aRxjDrWb4RaMfIFlx3kVnBHMBQdCI4hDSZINK77UayKdEh6XrLnqN5xhzdpdrXySb85Do48QlBmYh+afNBjilHnuMTGNYLIPSht8MKCR0uGnTilux3RZivDsv5o1MTXjvPAB2JbpUG8hjFA2bu1xIJmsgre9D7b2YTzZ/8O4Ds7yWXY4yz+/TI7ebwe1g56gp+gZytBrdIRO0ClaIIo0+oF+ol/RbvQqehu9+1saTbZ3HqNRRMd/AOoMx0Y=</latexit>

b1
2<latexit sha1_base64="48hzb+AznY96mcFqciOBrOA3jW8=">AAACjXicZVHLbtQwFPWEVxkebWHJJiIbhMooSUGwQKgCpHYzokhMW2kcRo5zk7Hil2ynCLn5DbbwW/wNzjALQu/CPj732tfn3FJzZl2a/p5EN27eun1n5+703v0HD3f39h+dWdUZCguquDIXJbHAmYSFY47DhTZARMnhvGw/DPnzSzCWKfnFfddQCNJIVjNKXKAwLhWvfNmv8q/Zai9JZ+km4usg24IEbeN0tT9pcaVoJ0A6yom1yyzVrvDEOEY59NMp7ixoQlvSgCfCCuLWB2GvlXR2nF52rn5TeCZ150DSISnhG1VCEFnhufd4uEwJj+d9P8oZsM4s88L7aRxjDrWb4RaMfIFlx3kVnBHMBQdCI4hDSZINK77UayKdEh6XrLnqN5xhzdpdrXySb85Do48QlBmYh+afNBjilHnuMTGNYLIPSht8MKCR0uGnTilux3RZivDsv5o1MTXjvPAB2JbpUG8hjFA2bu1xIJmsgre9D7b2YTzZ/8O4Ds7yWXY4yz+/TI7ebwe1g56gp+gZytBrdIRO0ClaIIo0+oF+ol/RbvQqehu9+1saTbZ3HqNRRMd/AOoOx0Y=</latexit>

OLR

P0
<latexit sha1_base64="DmyI5jIl/o2Qe+ONBU9XkPhN8LQ=">AAAChXicZVHLbtQwFPWER0t4tbBkE5ENQu0oGSrojgpYsBkxSExbaRyNHM9NYsUv2U4r5OYX2MKv8Tc4wywIvQv7+JxrX597S82ZdVn2exLduXvv/t7+g/jho8dPnh4cPju3qjMUllRxZS5LYoEzCUvHHIdLbYCIksNF2X4c9IsrMJYp+c1911AIUktWMUrcQC3WWbw+SLNpto3kNsh3IEW7WKwPJy3eKNoJkI5yYu0qz7QrPDGOUQ59HOPOgia0JTV4IqwgrjkKe6Wks2N51bnqtPBM6s6BpIMo4ZoqIYjc4Ln3eLhMCU/mfT/SDFhnVrPC+zhJMIfKTXELRh5j2XG+CR0RzAXnoRAkISXNhxVf6YZIp4THJatv+i1nWN24m7VPZ9vzUOgTBGcG5qH4Fw2GOGVee0xMLZjsg9MaHw1o5HT4qVOK2zFdliI8+69nTUzFOC98ALZlOuRbCKOTtWs8DiSTm9Db3oe29mE8+f/DuA3OZ9P8zXT29SQ9+7Ab1D56gV6iVyhH79AZ+owWaIkoatAP9BP9ivai4+gkevs3NZrs7jxHo4je/wEeDsNo</latexit>

P 3
1<latexit sha1_base64="INT9cYrDKgGAQtUZnp/nfvyF7pA=">AAACh3icZVHLctMwFFXMqzWPtrBk48EbhinBThnosjwWbDKEGZJ2JjIZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl2W/R9GNm7du39nbj+/eu//g4PDo4cKq1lCYU8WVuSiJBc4kzB1zHC60ASJKDudl867Xzy/BWKbkZ/ddQyFILVnFKHGBWsxW+ZeTeHWYZuNsG8l1kO9AinYxWx2NGrxWtBUgHeXE2mWeaVd4YhyjHLo4xq0FTWhDavBEWEHc5jjslZLODuVl66rTwjOpWweS9qKEb1QJQeQaT73H/WVKeDLtuoFmwDqznBTex0mCOVRujBsw8jmWLefr0BPBXPAeCkESUtK8X/Gl3hDplPC4ZPVVt+UMqzfuauXTyfbcF3oPwZmBaSj+UYMhTplnHhNTCya74LTGxz0aOO1/6pTidkiXpQjP/utZE1MxzgsfgG2YDvkWwvBk7TYeB5LJdeht50NbuzCe/P9hXAeLyTg/GU8+vUzP3u4GtYceoyfoKcrRa3SGPqAZmiOKvqIf6Cf6Fe1HL6JX0enf1Gi0u/MIDSJ68weg88QO</latexit>

P 2
1<latexit sha1_base64="5Od1GhbcHI/7C8fxD/zxb2gQroY=">AAACh3icZVHLctMwFFXMo615tbBk48EbhinBNkzpsjwWbDKEGZJ2JgoZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl2W/R9GNm7du7+0fxHfu3rv/4PDo4dyq1lCYUcWVuSiJBc4kzBxzHC60ASJKDudl867Xzy/BWKbkZ/ddw1KQWrKKUeICNZ+u8i9FvDpMs3G2jeQ6yHcgRbuYro5GDV4r2gqQjnJi7SLPtFt6YhyjHLo4xq0FTWhDavBEWEHc5jjslZLODuVF66rTpWdStw4k7UUJ36gSgsg1nniP+8uU8GTSdQPNgHVmUSy9j5MEc6jcGDdg5HMsW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnxfbcF3oPwZmBSSj+UYMhTplnHhNTCya74LTGxz0aOO1/6pTidkiXpQjP/utZE1Mxzpc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA7mxTh/OS4+vUrP3u4GtY8eoyfoKcrRa3SGPqApmiGKvqIf6Cf6FR1EL6KT6PRvajTa3XmEBhG9+QOe1MQN</latexit>

P 3
2<latexit sha1_base64="VzxVOjiDcaDTXkuxEG+nAMqWe2I=">AAACh3icZVHLctMwFFXMqzWPtrBk4yEbhinBdhnosjwWbDKEGZJ2JjIZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl6a/R9GNm7du39nbj+/eu//g4PDo4cKq1lCYU8WVuSiJBc4kzB1zHC60ASJKDudl867Xzy/BWKbkZ/ddQyFILVnFKHGBWsxW+ZeTeHU4TifpNpLrINuBMdrFbHU0avBa0VaAdJQTa5dZql3hiXGMcujiGLcWNKENqcETYQVxm+OwV0o6O5SXratOC8+kbh1I2osSvlElBJFrPPUe95cp4cm06waaAevMMi+8j5MEc6jcBDdg5HMsW87XoSeCueA9FIIkpIyzfsWXekOkU8LjktVX3ZYzrN64q5Uf59tzX+g9BGcGpqH4Rw2GOGWeeUxMLZjsgtMaH/do4LT/qVOK2yFdliI8+69nTUzFOC98ALZhOuRbCMOTtdt4HEgm16G3nQ9t7cJ4sv+HcR0s8kl2Msk/vRyfvd0Nag89Rk/QU5Sh1+gMfUAzNEcUfUU/0E/0K9qPXkSvotO/qdFod+cRGkT05g+jFMQP</latexit>

P 2
2<latexit sha1_base64="H2L5//NcqPkNa/YUpahgTeTFfMw=">AAACh3icZVHLctMwFFXMo615tbBk48EbhinBNkzpsjwWbDKEGZJ2JgoZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl2W/R9GNm7du7+0fxHfu3rv/4PDo4dyq1lCYUcWVuSiJBc4kzBxzHC60ASJKDudl867Xzy/BWKbkZ/ddw1KQWrKKUeICNZ+uii9FvDpMs3G2jeQ6yHcgRbuYro5GDV4r2gqQjnJi7SLPtFt6YhyjHLo4xq0FTWhDavBEWEHc5jjslZLODuVF66rTpWdStw4k7UUJ36gSgsg1nniP+8uU8GTSdQPNgHVmUSy9j5MEc6jcGDdg5HMsW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnxfbcF3oPwZmBSSj+UYMhTplnHhNTCya74LTGxz0aOO1/6pTidkiXpQjP/utZE1Mxzpc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA7mxTh/OS4+vUrP3u4GtY8eoyfoKcrRa3SGPqApmiGKvqIf6Cf6FR1EL6KT6PRvajTa3XmEBhG9+QOg9cQO</latexit>

P 3
3

<latexit sha1_base64="8zYbadBMpmOhar6scd2A0btBoSY=">AAACh3icZVHLctMwFFXMqzWPtrBk48EbhinBThjosjwWbDKEGZJ2JgoZWbl2hPUaSS7DqP4Htu2f8TfIIQtM70I6OudKV+feQnNmXZb9HkS3bt+5e29vP77/4OGjg8Ojx3OrGkNhRhVX5rwgFjiTMHPMcTjXBogoOJwV9YdOP7sAY5mSX91PDUtBKslKRokL1Hy6Gn8bx6vDNBtm20hugnwHUrSL6epoUOO1oo0A6Sgn1i7yTLulJ8YxyqGNY9xY0ITWpAJPhBXEbY7DXirpbF9eNK48WXomdeNA0k6U8IMqIYhc44n3uLtMCU8mbdvTDFhnFqOl93GSYA6lG+IajHyJZcP5OvREMBe8h0KQhJQ071Z8oTdEOiU8Llh12W45w6qNu1z5dLQ9d4U+QnBmYBKKf9ZgiFPmhcfEVILJNjit8HGHek67nzqluO3TRSHCs/961sSUjPOlD8DWTId8C2F4snIbjwPJ5Dr0tvWhrW0YT/7/MG6C+WiYj4ejL6/T0/e7Qe2hp+gZeo5y9Badok9oimaIou/oF7pC19F+9Cp6E538TY0GuztPUC+id38ApTXEEA==</latexit>

P 3
4<latexit sha1_base64="n49Pw4YehXj1TxufITQxpbXAEoA=">AAACh3icZVHLctMwFFXMqzWvFpZsPHjDMCXYaQe6LI8FmwxhhqSdiUxGVq4dYb1Gksswqv+BLfwZf4McssD0LqSjc650de4tNWfWZdnvUXTj5q3bd/b247v37j94eHD4aGFVayjMqeLKXJTEAmcS5o45DhfaABElh/Oyedfr55dgLFPys/uuoRCklqxilLhALWarky/H8eogzcbZNpLrIN+BFO1itjocNXitaCtAOsqJtcs8067wxDhGOXRxjFsLmtCG1OCJsIK4zVHYKyWdHcrL1lWnhWdStw4k7UUJ36gSgsg1nnqP+8uU8GTadQPNgHVmOSm8j5MEc6jcGDdg5AssW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnk+25L/QegjMD01D8owZDnDLPPSamFkx2wWmNj3o0cNr/1CnF7ZAuSxGe/dezJqZinBc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA4Wk3F+PJ58OknP3u4GtYeeoKfoGcrRa3SGPqAZmiOKvqIf6Cf6Fe1HL6NX0enf1Gi0u/MYDSJ68wenVsQR</latexit>

P 3
5

<latexit sha1_base64="zpMKUsZZP7lVSNKNPmXKm4ZsUVE=">AAACh3icZVHLctMwFFXMqzWvFpZsPHjDMCXYKY8uy2PBJkOYIWlnIpORlWtHWK+R5DKM6n9gC3/G3yCHLDC9C+nonCtdnXtLzZl1WfZ7FF27fuPmrb39+Padu/fuHxw+WFjVGgpzqrgy5yWxwJmEuWOOw7k2QETJ4axs3vX62QUYy5T87L5rKASpJasYJS5Qi9nq5ZfjeHWQZuNsG8lVkO9AinYxWx2OGrxWtBUgHeXE2mWeaVd4YhyjHLo4xq0FTWhDavBEWEHc5ijslZLODuVl66qTwjOpWweS9qKEb1QJQeQaT73H/WVKeDLtuoFmwDqznBTex0mCOVRujBsw8hmWLefr0BPBXPAeCkESUtK8X/GF3hDplPC4ZPVlt+UMqzfucuXTyfbcF3oPwZmBaSj+UYMhTpmnHhNTCya74LTGRz0aOO1/6pTidkiXpQjP/utZE1MxzgsfgG2YDvkWwvBk7TYeB5LJdeht50NbuzCe/P9hXAWLyTg/Hk8+vUhP3+4GtYceocfoCcrRa3SKPqAZmiOKvqIf6Cf6Fe1Hz6NX0cnf1Gi0u/MQDSJ68wepd8QS</latexit> P 3
6

<latexit sha1_base64="Yavte+6bXTwwhX4JaHZSeCigaPw=">AAACh3icZVHLctMwFFXMqzWvFpZsPHjDMCXYKVO6LI8FmwxhhqSdiUxGVq4dYb1Gksswqv+BLfwZf4McssD0LqSjc650de4tNWfWZdnvUXTj5q3bd/b247v37j94eHD4aGFVayjMqeLKXJTEAmcS5o45DhfaABElh/Oyedfr55dgLFPys/uuoRCklqxilLhALWarky/H8eogzcbZNpLrIN+BFO1itjocNXitaCtAOsqJtcs8067wxDhGOXRxjFsLmtCG1OCJsIK4zVHYKyWdHcrL1lWnhWdStw4k7UUJ36gSgsg1nnqP+8uU8GTadQPNgHVmOSm8j5MEc6jcGDdg5AssW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnk+25L/QegjMD01D8owZDnDLPPSamFkx2wWmNj3o0cNr/1CnF7ZAuSxGe/dezJqZinBc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA4Wk3F+PJ58epWevd0Nag89QU/RM5Sj1+gMfUAzNEcUfUU/0E/0K9qPXkYn0enf1Gi0u/MYDSJ68wermMQT</latexit>

Q3
2<latexit sha1_base64="Hkwz/lw0ioOcqR3ZHUoMk+VWQu4=">AAACh3icZVHLbtQwFPWEVxteLSzZRGSDUBkmKWq7LI8FmxGtxEwrjcPI8dxkTPyS7RQhN//AFv6Mv8EZZkHoXdjH51z7+txbas6sm0x+j6Jbt+/cvbezG99/8PDR4739J3OrWkNhRhVX5rIkFjiTMHPMcbjUBogoOVyUzftev7gCY5mSn913DYUgtWQVo8QFan6+zL8cxsu9dDKebCK5CbItSNE2zpb7owavFG0FSEc5sXaRTbQrPDGOUQ5dHOPWgia0ITV4Iqwgbn0Q9kpJZ4fyonXVSeGZ1K0DSXtRwjeqhCByhafe4/4yJTyZdt1AM2CdWeSF93GSYA6VG+MGjHyFZcv5KvREMBe8h0KQhJQ061d8pddEOiU8Lll93W04w+q1u176NN+c+0IfIDgzMA3FP2kwxCnz0mNiasFkF5zW+KBHA6f9T51S3A7pshTh2X89a2IqxnnhA7AN0yHfQhierN3a40AyuQq97XxoaxfGk/0/jJtgno+zw3F+/iY9fbcd1A56hp6jFyhDx+gUfURnaIYo+op+oJ/oV7QbvY6OopO/qdFoe+cpGkT09g+lN8QQ</latexit>

P 2
3

<latexit sha1_base64="FMtJvBKSFUET3g56rsEoGPxoyI4=">AAACh3icZVHLctMwFFXMqzWPtrBk4yEbhinBdhnosjwWbDKEGZJ2JjIZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl6a/R9GNm7du39nbj+/eu//g4PDo4cKq1lCYU8WVuSiJBc4kzB1zHC60ASJKDudl867Xzy/BWKbkZ/ddQyFILVnFKHGBWsxWJ1/yeHU4TifpNpLrINuBMdrFbHU0avBa0VaAdJQTa5dZql3hiXGMcujiGLcWNKENqcETYQVxm+OwV0o6O5SXratOC8+kbh1I2osSvlElBJFrPPUe95cp4cm06waaAevMMi+8j5MEc6jcBDdg5HMsW87XoSeCueA9FIIkpIyzfsWXekOkU8LjktVX3ZYzrN64q5Uf59tzX+g9BGcGpqH4Rw2GOGWeeUxMLZjsgtMaH/do4LT/qVOK2yFdliI8+69nTUzFOC98ALZhOuRbCMOTtdt4HEgm16G3nQ9t7cJ4sv+HcR0s8kl2Msk/vRyfvd0Nag89Rk/QU5Sh1+gMfUAzNEcUfUU/0E/0K9qPXkSvotO/qdFod+cRGkT05g+jFsQP</latexit>

P 3
7

<latexit sha1_base64="k0lzKdZL5w5ZbOzxeCrKtAlci5s=">AAACh3icZVHLctMwFFXMqzWvFpZsPHjDMCXYKUO7LI8FmwxhhqSdiUxGVq4dYb1Gksswqv+BLfwZf4McssD0LqSjc650de4tNWfWZdnvUXTj5q3bd/b247v37j94eHD4aGFVayjMqeLKXJTEAmcS5o45DhfaABElh/Oyedfr55dgLFPys/uuoRCklqxilLhALWarky/H8eogzcbZNpLrIN+BFO1itjocNXitaCtAOsqJtcs8067wxDhGOXRxjFsLmtCG1OCJsIK4zVHYKyWdHcrL1lWnhWdStw4k7UUJ36gSgsg1nnqP+8uU8GTadQPNgHVmOSm8j5MEc6jcGDdg5AssW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnk+25L/QegjMD01D8owZDnDLPPSamFkx2wWmNj3o0cNr/1CnF7ZAuSxGe/dezJqZinBc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA4Wk3F+PJ58epWevd0Nag89QU/RM5SjE3SGPqAZmiOKvqIf6Cf6Fe1HL6PX0enf1Gi0u/MYDSJ68wetucQU</latexit>

P 3
8

<latexit sha1_base64="sMUnMjayDX3qhFA1rvFRM/EdUBc=">AAACh3icZVHLctMwFFXMqzWPtrBk48EbhinBThnIsjwWbDKEGZJ2JgoZWbl2hPUaSS7DqP4Htu2f8TfIIQtM70I6OudKV+feQnNmXZb9HkS3bt+5e29vP77/4OGjg8Ojx3OrGkNhRhVX5rwgFjiTMHPMcTjXBogoOJwV9YdOP7sAY5mSX91PDUtBKslKRokL1Hy6Gn87iVeHaTbMtpHcBPkOpGgX09XRoMZrRRsB0lFOrF3kmXZLT4xjlEMbx7ixoAmtSQWeCCuI2xyHvVTS2b68aFw5XnomdeNA0k6U8IMqIYhc44n3uLtMCU8mbdvTDFhnFqOl93GSYA6lG+IajHyJZcP5OvREMBe8h0KQhJQ071Z8oTdEOiU8Llh12W45w6qNu1z5dLQ9d4U+QnBmYBKKf9ZgiFPmhcfEVILJNjit8HGHek67nzqluO3TRSHCs/961sSUjPOlD8DWTId8C2F4snIbjwPJ5Dr0tvWhrW0YT/7/MG6C+WiYnwxHX16np+93g9pDT9Ez9Bzl6C06RZ/QFM0QRd/RL3SFrqP96FX0Jhr/TY0GuztPUC+id38Ar9rEFQ==</latexit>

P 3
9

<latexit sha1_base64="HG4ImGekvwj6P8tjAZbJsuMMb6Y=">AAACh3icZVHLctMwFFXMqzWvFpZsPHjDMCXYKQNlVx4LNhnCDEk7E5mMrFw7wnqNJJdhVP8DW/gz/gY5ZIHpXUhH51zp6txbas6sy7Lfo+ja9Rs3b+3tx7fv3L13/+DwwcKq1lCYU8WVOS+JBc4kzB1zHM61ASJKDmdl867Xzy7AWKbkZ/ddQyFILVnFKHGBWsxWr78cx6uDNBtn20iugnwHUrSL2epw1OC1oq0A6Sgn1i7zTLvCE+MY5dDFMW4taEIbUoMnwgriNkdhr5R0digvW1edFJ5J3TqQtBclfKNKCCLXeOo97i9TwpNp1w00A9aZ5aTwPk4SzKFyY9yAkc+wbDlfh54I5oL3UAiSkJLm/Yov9IZIp4THJasvuy1nWL1xlyufTrbnvtB7CM4MTEPxjxoMcco89ZiYWjDZBac1PurRwGn/U6cUt0O6LEV49l/PmpiKcV74AGzDdMi3EIYna7fxOJBMrkNvOx/a2oXx5P8P4ypYTMb58Xjy6UV6+nY3qD30CD1GT1COXqFT9AHN0BxR9BX9QD/Rr2g/eh69jE7+pkaj3Z2HaBDRmz+x+8QW</latexit>

P3
<latexit sha1_base64="p4pDNsB++nB0bU+IbNzJvIw06jA=">AAAChXicZVHLbtQwFPWER0t4tIUlm4hsEGpHybQCdlTAgs2IQWLaSuNo5HhuEit+yXaKkJtfYAu/xt/gDLMg9C7s43OufX3uLTVn1mXZ70l05+69+3v7D+KHjx4/OTg8enphVWcoLKniylyVxAJnEpaOOQ5X2gARJYfLsv0w6JfXYCxT8qv7rqEQpJasYpS4gVqsT+P1YZpNs20kt0G+AynaxWJ9NGnxRtFOgHSUE2tXeaZd4YlxjHLo4xh3FjShLanBE2EFcc1x2CslnR3Lq85VbwvPpO4cSDqIEr5RJQSRGzz3Hg+XKeHJvO9HmgHrzGpWeB8nCeZQuSluwcgTLDvON6EjgrngPBSCJKSk+bDia90Q6ZTwuGT1Tb/lDKsbd7P26Wx7Hgp9hODMwDwU/6zBEKfMK4+JqQWTfXBa4+MBjZwOP3VKcTumy1KEZ//1rImpGOeFD8C2TId8C2F0snaNx4FkchN62/vQ1j6MJ/9/GLfBxWyan05nX87S8/e7Qe2j5+gFeoly9Aado09ogZaIogb9QD/Rr2gvOonOotd/U6PJ7s4zNIro3R8ka8Nr</latexit>

Q3
3

<latexit sha1_base64="O45W+DaAOHWb4ZOfZzWzgxhFxHU=">AAACnHicZVHLbtNAFJ2YVwmvFpZIyMIbhEpkJ0iwrKALJBTRSiStlDHReHLtjDIPa+a6FZp6wRewhU/jbxiHLHB7FzNnzn3NubeopXCYpn8G0a3bd+7e27s/fPDw0eMn+wdP5840lsOMG2nsecEcSKFhhgIlnNcWmCoknBWbj53/7AKsE0Z/xe815IpVWpSCMwzU7HQ5+TZZ7ifpKN1afBNkO5CQnZ0sDwY/6MrwRoFGLplziyytMffMouAS2uGQNg5qxjesAs+UUwzXh+EujUbXdy8aLN/nXui6QdC8c2q45EYppld06j3tkjmT8bRtez4LDu1inHs/jGMqocQR3YDVb6hupFyFkSiBQXpoBHEISbLupBf1mmk0ytNCVFftlrOiWuPV0ifj7btrdAxBmYVpaP6lBsvQ2NeeMlspodugtKKHHeop7X6KxkjXp4tChbL/a66ZLYWUuQ/AbUR9rUwjUVhzGVgHYaO6wrWnIVToVZh468Ow27C07PqKboL5eJRNRuPTt8nRh9369shz8pK8Ihl5R47IJ3JCZoQTQX6SX+R39CI6jj5H03+h0WCX84z0LJr/Bf1WzXs=</latexit>

Q3
4<latexit sha1_base64="gaXtx2BWcMYRv7RoQ5u/IdPIWw4=">AAACnHicZVHLbtQwFPWEVxkebWGJhCKyQaiMkmklWFbQBRIa0UrMtNI4jBzPTcYaPyL7phVys+AL2MKn8Tc4wyxIexf28bkvn3uLWgqHafpnEN25e+/+g52Hw0ePnzzd3dt/NnOmsRym3EhjLwrmQAoNUxQo4aK2wFQh4bxYf+z855dgnTD6K36vIVes0qIUnGGgpmeLo2+Hi70kHaUbi2+DbAsSsrXTxf7gB10a3ijQyCVzbp6lNeaeWRRcQjsc0sZBzfiaVeCZcorh6iDcpdHo+u55g+X73AtdNwiad04NV9woxfSSTrynXTJnMp60bc9nwaGdj3Pvh3FMJZQ4omuw+i3VjZTLMBIlMEgPjSAOIUnWnfSyXjGNRnlaiOq63XBWVCu8XvhkvHl3jU4gKLMwCc2/1GAZGvvGU2YrJXQblFb0oEM9pd1P0Rjp+nRRqFD2f801s6WQMvcBuLWob5RpJAprrgLrIGxUV7jyNIQKvQwTb30YdhuWlt1c0W0wG4+yw9H47Cg5/rBd3w55QV6R1yQj78gx+UROyZRwIshP8ov8jl5GJ9HnaPIvNBpsc56TnkWzv/+MzXw=</latexit>

Q3
5

<latexit sha1_base64="KXcyGwgOIBIdVSYw4eWtpeCh+xQ=">AAACnHicZVHLbtQwFPWEVxkebWGJhCKyQaiMkikIlhV0gYRGtBIzrTQOI8dzk7HGj8i+aYXcLPgCtvBp/A3OMAvS3oV9fO7L596ilsJhmv4ZRLdu37l7b+f+8MHDR4939/afzJxpLIcpN9LY84I5kELDFAVKOK8tMFVIOCvWHzv/2QVYJ4z+it9ryBWrtCgFZxio6eni7bfDxV6SjtKNxTdBtgUJ2drJYn/wgy4NbxRo5JI5N8/SGnPPLAouoR0OaeOgZnzNKvBMOcVwdRDu0mh0ffe8wfJ97oWuGwTNO6eGS26UYnpJJ97TLpkzGU/atuez4NDOx7n3wzimEkoc0TVY/ZrqRsplGIkSGKSHRhCHkCTrTnpRr5hGozwtRHXVbjgrqhVeLXwy3ry7RscQlFmYhOZfarAMjX3lKbOVEroNSit60KGe0u6naIx0fbooVCj7v+aa2VJImfsA3FrU18o0EoU1l4F1EDaqK1x5GkKFXoaJtz4Muw1Ly66v6CaYjUfZ4Wh8+iY5+rBd3w55Rl6QlyQj78gR+UROyJRwIshP8ov8jp5Hx9HnaPIvNBpsc56SnkWzvwHRzX0=</latexit>

Q3
6

<latexit sha1_base64="Juw8S40Ill6hEHH3rDkE+rQOKkQ=">AAACnHicZVHLbtQwFPWEVxkebWGJhCKyQaiMkikClhV0gYRGtBIzrTQOI8dzk7HGj8i+aYXcLPgCtvBp/A3OMAvS3oV9fO7L596ilsJhmv4ZRLdu37l7b+f+8MHDR4939/afzJxpLIcpN9LY84I5kELDFAVKOK8tMFVIOCvWHzv/2QVYJ4z+it9ryBWrtCgFZxio6eni7bfDxV6SjtKNxTdBtgUJ2drJYn/wgy4NbxRo5JI5N8/SGnPPLAouoR0OaeOgZnzNKvBMOcVwdRDu0mh0ffe8wfJ97oWuGwTNO6eGS26UYnpJJ97TLpkzGU/atuez4NDOx7n3wzimEkoc0TVY/ZrqRsplGIkSGKSHRhCHkCTrTnpRr5hGozwtRHXVbjgrqhVeLXwy3ry7RscQlFmYhOZfarAMjX3lKbOVEroNSit60KGe0u6naIx0fbooVCj7v+aa2VJImfsA3FrU18o0EoU1l4F1EDaqK1x5GkKFXoaJtz4Muw1Ly66v6CaYjUfZ4Wh8+iY5+rBd3w55Rl6QlyQj78gR+UROyJRwIshP8ov8jp5Hx9HnaPIvNBpsc56SnkWzvwQHzX4=</latexit>

Q3
7

<latexit sha1_base64="Hk0cL0ZCrY5d87FAknrbx8mITWY=">AAACnHicZVHLbtQwFPWEVxkebWGJhCKyQaiMkilSWVbQBRIa0UrMtNI4jBzPTcYaPyL7phVys+AL2MKn8Tc4wyxIexf28bkvn3uLWgqHafpnEN25e+/+g52Hw0ePnzzd3dt/NnOmsRym3EhjLwrmQAoNUxQo4aK2wFQh4bxYf+z855dgnTD6K36vIVes0qIUnGGgpmeLo2+Hi70kHaUbi2+DbAsSsrXTxf7gB10a3ijQyCVzbp6lNeaeWRRcQjsc0sZBzfiaVeCZcorh6iDcpdHo+u55g+X73AtdNwiad04NV9woxfSSTrynXTJnMp60bc9nwaGdj3Pvh3FMJZQ4omuw+i3VjZTLMBIlMEgPjSAOIUnWnfSyXjGNRnlaiOq63XBWVCu8XvhkvHl3jU4gKLMwCc2/1GAZGvvGU2YrJXQblFb0oEM9pd1P0Rjp+nRRqFD2f801s6WQMvcBuLWob5RpJAprrgLrIGxUV7jyNIQKvQwTb30YdhuWlt1c0W0wG4+yw9H47F1y/GG7vh3ygrwir0lGjsgx+UROyZRwIshP8ov8jl5GJ9HnaPIvNBpsc56TnkWzvwY9zX8=</latexit>

P 2
5

<latexit sha1_base64="8b817G9Wmo9ZJmHe44oPq+OQLDE=">AAACnHicZVHLjtMwFHXDayiPmYElEorIBqGhagIIliOYBRKqKBLtjFSHynFvUqt+RPbNjJAnC76ALXwaf4NTuiAzd2Efn/vyubeopXA4Hv8ZRDdu3rp9Z+/u8N79Bw/3Dw4fzZ1pLIcZN9LYs4I5kELDDAVKOKstMFVIOC02Hzr/6TlYJ4z+it9ryBWrtCgFZxio2XT55lu2PEjGo/HW4usg3YGE7Gy6PBz8oCvDGwUauWTOLdJxjblnFgWX0A6HtHFQM75hFXimnGK4Pgp3aTS6vnvRYPku90LXDYLmnVPDBTdKMb2iE+9pl8yZjCdt2/NZcGgXWe79MI6phBJHdANWv6S6kXIVRqIEBumhEcQhJEm7k57Xa6bRKE8LUV22W86Kao2XS59k23fX6ASCMguT0PxzDZahsS88ZbZSQrdBaUWPOtRT2v0UjZGuTxeFCmX/11wzWwopcx+A24j6SplGorDmIrAOwkZ1hWtPQ6jQqzDx1odht2Fp6dUVXQfzbJS+GmVfXifH73fr2yNPyDPynKTkLTkmH8mUzAgngvwkv8jv6Gl0En2KJv9Co8Eu5zHpWTT/C/1WzXs=</latexit>

P 2
4<latexit sha1_base64="32vjFGusKAp0SeX0rWZw/4ukRWY=">AAACnHicZVHLbtNAFJ2YVwmPtrBEQhbeIFSi2FSCZQVdIKGIIJG0UsZE48m1M8o8rJnrVmjqBV/AFj6Nv2EcssDtXcycOfc1596ilsLhePxnEN26fefuvb37wwcPHz3ePzh8MnemsRxm3EhjzwvmQAoNMxQo4by2wFQh4azYfOj8ZxdgnTD6K36vIVes0qIUnGGgZtPl8bdseZCMR+OtxTdBugMJ2dl0eTj4QVeGNwo0csmcW6TjGnPPLAouoR0OaeOgZnzDKvBMOcVwfRTu0mh0ffeiwfJd7oWuGwTNO6eGS26UYnpFJ97TLpkzGU/atuez4NAustz7YRxTCSWO6Aasfk11I+UqjEQJDNJDI4hDSJJ2J72o10yjUZ4Worpqt5wV1Rqvlj7Jtu+u0SkEZRYmofnnGixDY195ymylhG6D0ooedaintPspGiNdny4KFcr+r7lmthRS5j4AtxH1tTKNRGHNZWAdhI3qCteehlChV2HirQ/DbsPS0usrugnm2Sh9M8q+HCcn73fr2yPPyAvykqTkLTkhH8mUzAgngvwkv8jv6Hl0Gn2KJv9Co8Eu5ynpWTT/C/sgzXo=</latexit>

Fig. 7. The constructions at the basis of the RDC and OLR schemes
for the same control polygon for the cubic case. RDC (left): The control
polygon (blue) is split into a chain of two control polygons (purple and
pink) by computing three shortest geodesic paths. The limit curve is
depicted in red. Here we show only the first subdivision. OLR (right): One
step of subdivision from Π2 (blue) to Π3 (red polygon). The even points
P3

2 j, as well as the intermediate points Q3
i lie on segments of Π2 and are

evaluated first. The evaluation of each odd point P3
2 j+1 requires computing

one shortest geodesic path (purple). This construction corresponds to
one midpoint subdivision followed by two steps of smoothing by averaging
consecutive points.

tangent at their junction point, thus their limit curves join with C1

continuity.

Note that the constraints imposed by Noakes [7] have the
purpose of warranting the uniqueness of a geodesic and its smooth
dependence from its endpoints. In our case, if such constraints are
violated, the limit curve is just one of the possible curves, which
one obtains by the arbitrary, but deterministic, choices made by
operator A at the cut locus. Once the choice is made, the resulting
curve is guaranteed to be C1. However, the result may not be
continuous in the space of curves while varying the control points.
The consequences of this fact will be discussed in Sec. 3.7.

Concerning curves of different order, Noakes [45] proved that
the C1 continuity holds also for quadratic curves. It remains an
open question whether the RDC scheme produces curves with
higher smoothness.

3.6 Open-uniform Lane-Riesenfeld Subdivision (OLR)
In [8], a uniform subdivision scheme has been proposed, which
ports to the manifold setting the well known Lane-Riesenfeld (LR)
scheme [46]. Such a scheme converges to B-splines and cannot be
used directly to design curves with fixed endpoints. We generalize
their result to a scheme with end conditions, which defines Bézier
curves, and we show that, in the cubic case, it converges to segments
that are C2 everywhere, possibly except at the endpoints, where
they are at least C1.

We briefly review the Euclidean scheme [39], [47]. A cubic
Bézier can be represented with an open-uniform B-spline* of
order 4, having the same control polygon Π, and knot vector
(0,0,0,0,1,1,1,1). Repeated knot insertion at the midpoint of all
non-zero intervals produces a sequence of open uniform B-splines,

*. A B-spline is said to be open-uniform, or uniform with end conditions, if
it is uniform, except at its endpoints, where repeated knots are inserted to make
the curve interpolate the endpoints of its control polygon.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

all describing the same curve; and the sequence of control polygons
Πn

LR converges to the curve itself.
The corresponding subdivision requires four special stencils at

each end of the polygon, and it is defined as follows:

Pn+1
2 j = 1

2 Pn
j +

1
2 Pn

j+1 j = 2...2n−2

Pn+1
2 j+1 =

1
8 Pn

j +
3
4 Pn

j+1 +
1
8 Pn

j+2 j = 2...2n−3

Pn+1
0 = P0

Pn+1
1 = 1

2 Pn
0 + 1

2 Pn
1

Pn+1
2 = 3

4 Pn
1 + 1

4 Pn
2

Pn+1
3 = 3

16 Pn
1 + 11

16 Pn
2 + 2

16 Pn
3

(8)

where, for the sake of brevity, we have omitted the end conditions
to the right end side, which are symmetric to the ones on the left.
We also omit the special stencils that are needed at the first and
second levels of subdivision, which can be derived easily, and
treated analogously in the context of the following extension. Note
that, the first two stencils in Eq. 8 give the uniform LR scheme
with two smoothing steps, which is applied to all central points.
Here, the stencils are written in compact form, instead of the usual
sequence of one average step followed by two smoothing steps,
because this leads to the same result in the linear scheme.

In order to port such a scheme to the manifold setting, we
first observe that some of the stencils appearing in Eq. 8 involve
more than two control points. Since, in general, we cannot rely
on the RCM, we need to factorize such stencils with repeated
averages, computed with operator A . In the manifold setting,
different factorizations may lead to different curves. We adopt a
factorization that “in the middle” (i.e., for j = 2 . . .2n− 2) gives
the same scheme of [8]:

P̃n+1
2 j = Pn

j P̃n+1
2 j+1 = A (Pn

j ,P
n
j+1,

1
2)

Qn+1
2 j = A (P̃n+1

2 j , P̃n+1
2 j+1,

1
2) Qn+1

2 j+1 = A (P̃n+1
2 j+1, P̃

n+1
2 j+2,

1
2)

Pn+1
2 j = A (Qn+1

2 j ,Qn+1
2 j+1,

1
2) Pn+1

2 j+1 = A (Qn+1
2 j+1,Q

n+1
2 j+2,

1
2).

This factorization indeed consists of one average step followed
by two smoothing steps. Note, however, that Qn+1

2 j and Qn+1
2 j+1 lie

on the shortest geodesic path γ j connecting Pn
j to Pn

j+1, and that
averages between points lying on γ j are in fact linear with respect
to its arc length. Consequently, we have that Pn+1

2 j = P̃n+1
2 j+1, and we

can rewrite the above formulas more compactly as follows:

Qn+1
2 j = A (Pn

j ,P
n
j+1,

3
4), Qn+1

2 j+1 = A (Pn
j+1Pn

j+2,
1
4)

Pn+1
2 j = A (Pn

j ,P
n
j+1,

1
2), Pn+1

2 j+1 = A (Qn
2 j,Q

n
2 j+1,

1
2).

(9)

We factorize the end stencil for Pn+1
3 (and its symmetric point

to the other end of the polygon) in a similar way. We require that
this point is again obtained with one averaging step followed by
two smoothing steps, and we apply the considerations above to
express repeated averages along the same geodesic in a compact
way. In order to accommodate for the other end conditions, the
averaging step between Pn

1 and Pn
2 must be unbalanced, while all

other steps can be maintained balanced. The only factorization
fulfilling these constraints is given by the following equations:

Pn+1
0 = P0

Pn+1
1 = A (Pn

0 ,P
n
1 ,

1
2)

Pn+1
2 = A (Pn

1 ,P
n
2 ,

1
4)

Qn+1
2 = A (Pn

1 ,P
n
2 ,

5
8), Qn+1

3 = A (Pn
2 ,P

n
3 ,

1
4)

Pn+1
3 = A (Qn+1

2 ,Qn+1
3 , 1

2)

(10)

where, as above, the expressions of Qn+1
2 and Qn+1

3 incorporate the
averaging step and the first smoothing step.

In summary, Equations 9 and 10 provide the stencils that
generalize Eq. 8 to the manifold case. One step of subdivision for
n = 3 is exemplified in Figure 7 (OLR).

We generalize the results of [8] to the above scheme, as follows:

Proposition 3.2. For any given control polygon Π= (P0,P1,P2,P3),
the manifold OLR subdivision converges to a limit curve that is
C2 continuous, possibly except at its endpoints. The limit curve
interpolates the endpoints of polygon Π and it is tangent to it.

Proof. We show that everywhere, except at the endpoints, the
results of [8] apply after a finite number of subdivision steps. To
this aim, we recall that our scheme is the result of repeated knot
insertion, which bisects all non-null intervals at each iteration. We
exploit the relation between knots and points of the subdivision
polygon to show that for every t ∈ (0,1) the limit curve exists
and is C2. For any given value of t, after n̄ iterations, we have
that t ∈ (2−n̄(j− 1),2−n̄(j+ 1)) for some j ∈ N. We can always
choose n̄ large enough that j > 7 and j < 2−n̄− 3. In this case,
the five consecutive control points Pn̄

j−4, . . . ,P
n̄
j , will undergo the

uniform LR stencils at all subsequent levels of subdivision. Next we
proceed as in the proof of Proposition 3.1. By triangular inequality,
it is easy to show that the manifold OLR scheme is contractive.
Thus, in a finite number of subdivision steps, say ñ, all 5-tuples
of consecutive points in Πñ

LR, are contained in a totally normal
neighborhood. If we take n = max(ñ, n̄) then, by [8], it follows
that the polygon Pn

j−4,P
n
j−3,P

n
j−2,P

n
j−1,P

n
j converges to a C2 limit

curve, corresponding to interval (2−n(j− 1),2−n(j+ 1)), which
contains t. The end conditions in Eq. 10 trivially guarantee that the
limit curve interpolates the initial control polygon Π at P0, and it
will be tangent at P0 to the geodesic connecting P0P1.

It follows from the proposition above that a single cubic Bézier
segment has C2 continuity, while different segments can be joined
to form splines with C1 continuity. It remains an open problem
how to build splines with C2 continuity at junction points.

3.7 Limitations
Since the operator A is deterministic, the curve obtained with either
the RDC or the OLR scheme is uniquely defined by its control
points. However, the curve may jump to a different configuration
for small displacements of control points, which make some of
the paths in the construction cross a cut locus. In Fig. 8 (left,
center), a tiny displacement of one control point takes one of the
shortest paths in the control polygon to a drastically different route,
resulting in a different curve; see the bottom part of Fig. 5 for
another example. In the accompanying video we provide more
dynamic examples of jumps. Note that jumps occur quite rarely,
as the cut locus of each point covers a set of zero measure. This
fact is intrinsic to the discontinuity of the manifold metrics and
constitutes an essential limitation to the design of splines in the
manifold setting, independently of the approach adopted.

This limitation can be circumvented easily, by means of splines
containing more control points, instead of single Bézier segments.
See Fig. 8 (right). Point insertion can be used to constrain the
curve to a desired path, as is customarily done in curve design, and
motivates the algorithms we present in Sections 4.1.3 and 4.2.3.
Note that, in general, the spline obtained with point insertion is
just an approximation of the original curve. This is also an intrinsic

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 8. Left, center: the geodesic line corresponding to the central
segment of the control polygon can take two different routes at the cut
locus of its endpoints, thus producing two different curves; in practice, the
curve will jump between the two configurations when dragging a control
point across a cut locus. Right: splitting the curve by point insertion
makes the selected configuration stable upon dragging.

limitation of the manifold setting, where a sub-segment of a Bézier
curve is not necessarily a Bézier curve itself. Automatic solutions
would be possible. It is easy to check when a curve “jumps” while
dragging a control point; in that case, the control polygon may be
split, e.g., by adding a point on the curve before displacement as a
new control point. In our user interface, we decided to avoid using
automatic methods to warrant maximum flexibility to the user.

4 PRACTICAL ALGORITHMS

We now focus on the RDC and OLR schemes. We provide
algorithms for: approximating the curve with a geodesic polyline
(curve tracing); evaluating a point on the curve for a given parameter
value (point evaluation); and splitting a curve at a given point into
a spline approximating it with two segments (point insertion). The
algorithm for curve tracing with the RDC scheme is equivalent to
the one proposed in [29], while the other five algorithms are novel.

To develop our algorithms, we assume to have procedures for
(1) computing the point-to-point shortest path between pairs of
points of M; (2) evaluating a point on a geodesic path at a given
parameter value; and (3) casting a geodesic path from a point in
a given direction. The computational details of such procedures,
as well as additional algorithms to support interactive control, are
provided in Section 5.

4.1 Algorithms for the RDC scheme
4.1.1 Curve tracing
The tracing algorithm recursively subdivides a geodesic polygon
Π into two sub-polygons ΠL and ΠR. Recursion is initialized
by computing the three shortest paths that constitute the polygon
connecting the initial control points P0,P1,P2,P3. Referring to Fig. 7
(RDC), one step of subdivision entails computing three geodesic
paths, and evaluating six midpoints of existing geodesics. The
polygons ΠL and ΠR are built by collecting the sub-paths depicted
in violet and in pink, respectively.

For uniform subdivision, a maximum level of recursion is either
chosen by the user, or computed on the basis of the total length
L(Π) of the initial polygon Π, and a threshold δ . Since the paths in
the subdivided polygon are shrinking through recursion, then after
dlog2(L(Π)/δ)e recursion levels, the length of a geodesic path in
the output will be bounded by δ . For adaptive subdivision, we stop
recursion as soon as the angles between tangents of consecutive
segments of Π differ for less than a given threshold θ . For a small
value of θ , this suggests that the curve can be approximated with a

geodesic polyline connecting the points of Π. Note that angles are
computed in tangent space, hence accounting just for the geodesic
curvature of the curve while disregarding the normal curvature
induced from the embedding. This approach works even when
a curve crosses sharp creases on polyhedral objects. Like in the
Euclidean case, cusps may appear at the transition between a simple
and a self-intersecting configuration of a curve. We resolve cusps
by stopping the recursion after a maximum number of levels.

4.1.2 Point evaluation
We support the evaluation of the point at a value t̄ on the curve. This
requires traversing the recursion tree with a bisection algorithm.
We split the control polygon at each level as described above, but
only compute the sub-polygon that contains t̄. We stop recursion
with the same criteria listed above.

The point at t̄ is computed by direct de Casteljau evaluation on
the leaf control polygon. Here we are assuming that the control
polygon in the leaf node is short enough to support direct de
Casteljau evaluation, and we use it to approximate the limit point
on the subdivided curve. By using arguments of proximity, as in
[36], [48], it can be shown that this approximation converges to the
limit curve, as the subdivision polygon is subdivided further.

4.1.3 Point insertion
With point insertion, a user can split a curve at a given point
P̄t , and obtain a spline consisting of two Bézier curves, from P0
to P̄t and from P̄t to Pk, which substitutes the input curve. This
is used to add detail during editing. While this computation is
exact in the Euclidean setting, the identity of curves before and
after point insertion cannot be guaranteed in the manifold setting.
Here we provide a solution that approximates the input curve by
interpolating its endpoints, as well as point P̄t , and preserving
the tangents at such points. We place the unconstrained points by
mimicking the algorithm in the Euclidean setting, trying to obtain
a spline that closely approximates the input curve.

We refer to the construction illustrated in Fig. 9. We descend
the recursion tree as in the previous algorithm, in order to find the
leaf Π containing the splitting point P̄t . Assuming, as above, that
Π is small enough, we split it at value t̄ by direct de Casteljau
evaluation, thus obtaining the two polygons ΠL and ΠR, in purple
and magenta in the figure. We process the two halves independently.
Here we show the algorithm for finding the polygon Π̄L defining
the curve between P0 and P̄t . The construction of the other half is
symmetric.

Let us denote

ΠL = (P′,PL,1,PL,2, P̄t)

the polygon in purple in Fig. 9, and let t ′ be the the parameter
corresponding to P′ on the input curve. In order to interpolate the
endpoints and the related tangent directions, we must have

Π̄L = (P0, P̄1, P̄2, P̄t)

where P̄1 must lie along the geodesic line connecting P0 and P1,
and P̄2 must lie along the extension of the geodesic line connecting
PL,2 and P̄t . The remaining degrees of freedom concern where
to place P̄1 and P̄2 along such lines. We place such two points
by maintaining the same proportions that would be used in the
Euclidean case.

Since P̄t is an endpoint of the curve defined by Π̄L, and it lies
at parameter t̄ on the input polygon Π, then P̄1 is found at distance

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

P0
<latexit sha1_base64="EkprC9ga72C3CQQ4eFlLFrP7AWM=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpV0gXBCa2AA5eKIujuSnVUOe4kteKPyJ4sQt78BK7w2/g3OKUHws7Bfn5v7PGbKRopHKbp71F04+atg9uHd8Z3791/8PDo+NGZM63lsORGGntRMAdSaFiiQAkXjQWmCgnnRf2+188vwTph9Ff83kCuWKVFKTjDQH1ZrNP1UZJO013E10G2BwnZx2J9PKrpxvBWgUYumXOrLG0w98yi4BK68Zi2DhrGa1aBZ8ophttJ2Euj0Q3lVYvlm9wL3bQImveihm/cKMX0hs69p/1lzmQ877qBZsGhXc1y78dxTCWUOKU1WP2C6lbKTWiIEhiMh0IQh5Qk61d62WyZRqM8LUR11e04K6otXq19Mtud+0IfIDizMA/FPzVgGRr73FNmKyV0F5xWdNKjgdP+p2iMdEO6KFR49l/PDbOlkDL3AbhaNCHfQZicrnDraSCF3oTedj60tQvjyf4fxnVwNptmJ9PZ55fJ6bv9oA7JE/KUPCMZeU1OyUeyIEvCSUV+kJ/kV3QQTaKT6NXf1Gi0v/OYDCJ6+wficsNU</latexit>

P̄1<latexit sha1_base64="sLRS89VR4Cmx9biJHrJGA6irTXg=">AAACinicZVFNb9QwEPWGj5alQAtHLhG5IFRWSUCiiEsFPXBZsUhsW7SOVo53NmvFH5E9KUJufgVX+GH8G5xlD4TOwX5+b+zxmykbKRym6e9RdOv2nbt7+/fG9w8ePHx0ePT43JnWcphzI429LJkDKTTMUaCEy8YCU6WEi7L+0OsXV2CdMPoLfm+gUKzSYi04w0B9pSWzftYts+Vhkk7SbcQ3QbYDCdnFbHk0qunK8FaBRi6Zc4ssbbDwzKLgErrxmLYOGsZrVoFnyimGm+Owr41GN5QXLa5PCi900yJo3osavnGjFNMrOvWe9pc5k/G06waaBYd2kRfej+OYSljjhNZg9UuqWylXoS1KYLAfCkEcUpKsX+lVs2EajfK0FNV1t+WsqDZ4vfRJvj33hc4gOLMwDcU/NWAZGvvCU2YrJXQXnFb0uEcDp/1P0RjphnRZqvDsv54bZtdCysIH4GrRhHwHYX66wo2ngRR6FXrb+dDWLown+38YN8F5PsleTfLPr5PT97tB7ZOn5Bl5TjLyhpySj2RG5oQTRX6Qn+RXdBDl0dvo3d/UaLS784QMIjr7AzF1xho=</latexit>

P1
<latexit sha1_base64="VQoXtdjf4y+NOezbKBMV1kcmRDU=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpV0gXBCa2AA5eKIujuSnVUOe4kteKPyJ4sQt78BK7w2/g3OKUHws7Bfn5v7PGbKRopHKbp71F04+atg9uHd8Z3791/8PDo+NGZM63lsORGGntRMAdSaFiiQAkXjQWmCgnnRf2+188vwTph9Ff83kCuWKVFKTjDQH1ZrLP1UZJO013E10G2BwnZx2J9PKrpxvBWgUYumXOrLG0w98yi4BK68Zi2DhrGa1aBZ8ophttJ2Euj0Q3lVYvlm9wL3bQImveihm/cKMX0hs69p/1lzmQ877qBZsGhXc1y78dxTCWUOKU1WP2C6lbKTWiIEhiMh0IQh5Qk61d62WyZRqM8LUR11e04K6otXq19Mtud+0IfIDizMA/FPzVgGRr73FNmKyV0F5xWdNKjgdP+p2iMdEO6KFR49l/PDbOlkDL3AbhaNCHfQZicrnDraSCF3oTedj60tQvjyf4fxnVwNptmJ9PZ55fJ6bv9oA7JE/KUPCMZeU1OyUeyIEvCSUV+kJ/kV3QQTaKT6NXf1Gi0v/OYDCJ6+wfkkMNV</latexit>

P̄2<latexit sha1_base64="F3tgr09xPB6pWFycObahvBuSPVA=">AAACinicZVFNb9QwEPWGj5alQAtHLhG5IFRWSUCiiEsFPXBZsUhsW7SOVo53NmvFH5E9KUJufgVX+GH8G5xlD4TOwX5+b+zxmykbKRym6e9RdOv2nbt7+/fG9w8ePHx0ePT43JnWcphzI429LJkDKTTMUaCEy8YCU6WEi7L+0OsXV2CdMPoLfm+gUKzSYi04w0B9pSWzftYt8+Vhkk7SbcQ3QbYDCdnFbHk0qunK8FaBRi6Zc4ssbbDwzKLgErrxmLYOGsZrVoFnyimGm+Owr41GN5QXLa5PCi900yJo3osavnGjFNMrOvWe9pc5k/G06waaBYd2kRfej+OYSljjhNZg9UuqWylXoS1KYLAfCkEcUpKsX+lVs2EajfK0FNV1t+WsqDZ4vfRJvj33hc4gOLMwDcU/NWAZGvvCU2YrJXQXnFb0uEcDp/1P0RjphnRZqvDsv54bZtdCysIH4GrRhHwHYX66wo2ngRR6FXrb+dDWLown+38YN8F5PsleTfLPr5PT97tB7ZOn5Bl5TjLyhpySj2RG5oQTRX6Qn+RXdBDl0dvo3d/UaLS784QMIjr7AzOTxhs=</latexit>

P 0
<latexit sha1_base64="A0KzD1bz3VHM4iPLbyMcq9zUmfo=">AAACiXicZVFNbxMxEHWWr5Ly0cKRy4q9IFSi3YBExamiHLhEBIm0keIQeZ3ZjbX+kj1bhNz9E1zhj/Fv8IYcCJ2D/fze2OM3U1opPOb570Fy6/adu/cO7g8PHzx89Pjo+MmFN63jMONGGjcvmQcpNMxQoIS5dcBUKeGybM57/fIKnBdGf8HvFpaK1VpUgjOM1Hz6lVonFKyOsnyUbyO9CYodyMgupqvjQUPXhrcKNHLJvF8UucVlYA4Fl9ANh7T1YBlvWA2BKa8Ybk7iXhmNfl9etFidLoPQtkXQvBc1fONGKabXdBIC7S9zJtNJ1+1pDjy6xXgZwjBNqYQKR7QBp19R3Uq5jl1RAqP7WAjSmJIV/Uqv7IZpNCrQUtTX3ZZzot7g9Spk4+25L/QBojMHk1j8kwXH0LiXgTJXK6G76LSmJz3ac9r/FI2Rfp8uSxWf/dezZa4SUi5DBL4RNuZ7iOPTNW4CjaTQ69jbLsS2dnE8xf/DuAkuxqPi9Wj8+U129n43qAPyjDwnL0hB3pIz8pFMyYxwIskP8pP8Sg6TIjlN3v1NTQa7O0/JXiTnfwB8YMXO</latexit>

PL,1
<latexit sha1_base64="jncbdp5qQI+vqb6i+eDJO3xjA4g=">AAACiHicZVHLjtMwFHXDawivGViyicgGoVIlHaRhdqOBBQsqikSnI9VR5bg3qRW/ZDszQp58BFv4Mv4Gp3RBmLuwj8+59vW5t9ScWZdlv0fRnbv37j84eBg/evzk6bPDo+cXVrWGwoIqrsxlSSxwJmHhmONwqQ0QUXJYls2HXl9egbFMyW/uu4ZCkFqyilHiArWcr/3ncd6tD9Nsku0iuQ3yPUjRPubro1GDN4q2AqSjnFi7yjPtCk+MY5RDF8e4taAJbUgNnggriNuOw14p6exQXrWuel94JnXrQNJelHBNlRBEbvDMe9xfpoQns64baAasM6tp4X2cJJhD5Sa4ASPfYtlyvglNEcwF86EQJCElzfsVX+ktkU4Jj0tW33Q7zrB6627WPp3uzn2hjxCcGZiF4l80GOKUeeMxMbVgsgtOazzu0cBp/1OnFLdDuixFePZfz5qYinFe+ABsw3TItxCmJ2u39TiQTG5Cbzsf2tqPJ/9/GLfBxXSSH0+mX9+lZ+f7QR2gl+gVeo1ydILO0Cc0RwtEUYN+oJ/oVxRHWXQSnf5NjUb7Oy/QIKLzP4wVxO0=</latexit>

PL,2
<latexit sha1_base64="6VIAI1ML7vVdazuTsukzVhFL3xU=">AAACiHicZVHLjtMwFHXDawivGViyicgGoVIlGaRhdqOBBQsqikSnI9VR5bi3qRW/ZDszQp58BFv4Mv4Gp3RBmLuwj8+59vW5t9KcWZdlv0fRnbv37j84eBg/evzk6bPDo+cXVrWGwpwqrsxlRSxwJmHumONwqQ0QUXFYVM2HXl9cgbFMyW/uu4ZSkFqyDaPEBWoxW/nP46JbHabZJNtFchvke5CifcxWR6MGrxVtBUhHObF2mWfalZ4YxyiHLo5xa0ET2pAaPBFWELcdh32jpLNDedm6zfvSM6lbB5L2ooRrqoQgco2n3uP+MiU8mXbdQDNgnVkWpfdxkmAOGzfBDRj5FsuW83VoimAumA+FIAkpad6v+EpviXRKeFyx+qbbcYbVW3ez8mmxO/eFPkJwZmAain/RYIhT5o3HxNSCyS44rfG4RwOn/U+dUtwO6aoS4dl/PWtiNozz0gdgG6ZDvoUwPVm7rceBZHIdetv50NZ+PPn/w7gNLopJfjwpvr5Lz873gzpAL9Er9Brl6ASdoU9ohuaIogb9QD/RryiOsugkOv2bGo32d16gQUTnfwCONMTu</latexit>

Pt̄
<latexit sha1_base64="sjTPO1xBmVSoHRFmx7Ajd8tYx64=">AAACjHicZVFNb9QwEPWGr7JAaeHIJSIXhMoqWSpRqUKqACEuKxaJbSuto5XjnWSt+COyJ0XIzc/gCr+Lf4Oz7IHQOdjPb8YevzdFI4XDNP09im7dvnP33t798YOHj/YfHxw+OXemtRwW3EhjLwvmQAoNCxQo4bKxwFQh4aKo3/f5iyuwThj9Fb83kCtWaVEKzjBQy/nK04JZj123OkjSSbqN+CbIdiAhu5ivDkc1XRveKtDIJXNumaUN5p5ZFFxCNx7T1kHDeM0q8Ew5xXBzFPbSaHTD9LLF8iT3QjctguZ9UsM3bpRiek1n3tP+MmcynnXdIGfBoV1Oc+/HcUwllDihNVj9iupWynUwRgkMBoRGEIeSJOtXetVsmEajgnxRXXdbzopqg9crn0y3577RBwjKLMxC888NWIbGvvSU2UoJ3QWlFT3q0UBp/1M0RrohXRQqPPuv5obZUkiZ+wBcLZpQ7yBMUFe48TSQQq+Dt50Ptvbjyf4fxk1wPp1kryfTL8fJ2bvdoPbIM/KcvCAZeUPOyCcyJwvCiSE/yE/yK9qPjqPT6O3f0mi0u/OUDCL6+AcfCcdp</latexit>

P3
<latexit sha1_base64="6lSqEXEg6ca3Oh765Me43nGHRwU=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpV0oJ2T2gFHLhUFEF3V6qjynGnqRV/RPZkEfLmJ3CF38a/wSk9EHYO9vN7Y4/fTFFL4TBNfw+iW7fvHNw9vDe8/+Dho8dHx0/OnWkshwU30tjLgjmQQsMCBUq4rC0wVUi4KKr3nX5xBdYJo7/i9xpyxUotNoIzDNSX+Wq6OkrScbqL+CbI9iAh+5ivjgcVXRveKNDIJXNumaU15p5ZFFxCOxzSxkHNeMVK8Ew5xXA7CvvGaHR9edng5jT3QtcNguadqOEbN0oxvaYz72l3mTMZz9q2p1lwaJeT3PthHFMJGxzTCqx+RXUj5To0RAkMxkMhiENKknUrvaq3TKNRnhaivG53nBXlFq9XPpnszl2hDxCcWZiF4p9qsAyNfekps6USug1OSzrqUM9p91M0Rro+XRQqPPuv55rZjZAy9wG4StQh30GYnC5x62kghV6H3rY+tLUN48n+H8ZNcD4ZZ9Px5PPr5OzdflCH5Bl5Tl6QjJyQM/KRzMmCcFKSH+Qn+RUdRKNoGr35mxoN9neekl5Eb/8A6MzDVw==</latexit>

P2
<latexit sha1_base64="WCyDzOnpCHjHtxr0wAU3T46/Cbk=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpVkgXBCa2AA5eKIujuSnVUOe40teKPyJ4sQt78BK7w2/g3OKUHws7Bfn5v7PGbKRspHKbp71F04+atg9uHd8Z3791/8PDo+NGZM63lsOBGGntRMgdSaFigQAkXjQWmSgnnZf2+188vwTph9Ff83kChWKXFRnCGgfoyX+WroySdpruIr4NsDxKyj/nqeFTTteGtAo1cMueWWdpg4ZlFwSV04zFtHTSM16wCz5RTDLeTsG+MRjeUly1u3hRe6KZF0LwXNXzjRimm13TmPe0vcybjWdcNNAsO7TIvvB/HMZWwwSmtweoXVLdSrkNDlMBgPBSCOKQkWb/Sy2bLNBrlaSmqq27HWVFt8Wrlk3x37gt9gODMwiwU/9SAZWjsc0+ZrZTQXXBa0UmPBk77n6Ix0g3pslTh2X89N8xuhJSFD8DVogn5DsLkdIVbTwMp9Dr0tvOhrV0YT/b/MK6Ds3yanUzzzy+T03f7QR2SJ+QpeUYy8pqcko9kThaEk4r8ID/Jr+ggmkQn0au/qdFof+cxGUT09g/mrsNW</latexit>

⇧0
<latexit sha1_base64="4MdV3/o9TKmDiSeKvoG+gq/0bnI=">AAACh3icZVHLctMwFFXMo615tbBk48EbhinBDkzpsjwWbDKEGZJ2JjIZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl2W/R9GNm7du7+0fxHfu3rv/4PDo4cKq1lCYU8WVuSiJBc4kzB1zHC60ASJKDudl867Xzy/BWKbkZ/ddQyFILVnFKHGBWuAZ+5LFq8M0G2fbSK6DfAdStIvZ6mjU4LWirQDpKCfWLvNMu8IT4xjl0MUxbi1oQhtSgyfCCuI2x2GvlHR2KC9bV50WnkndOpC0FyV8o0oIItd46j3uL1PCk2nXDTQD1pnlpPA+ThLMoXJj3ICRz7FsOV+HngjmgvdQCJKQkub9ii/1hkinhMclq6+6LWdYvXFXK59Otue+0HsIzgxMQ/GPGgxxyjzzmJhaMNkFpzU+7tHAaf9TpxS3Q7osRXj2X8+amIpxXvgAbMN0yLcQhidrt/E4kEyuQ287H9rahfHk/w/jOlhMxvnL8eTTq/Ts7W5Q++gxeoKeohy9RmfoA5qhOaLoK/qBfqJf0UH0IjqJTv+mRqPdnUdoENGbPwuDxEA=</latexit>

⇧̄L
<latexit sha1_base64="tYxDumgtV1QFdpNnQU/HQivawYA=">AAACjnicZVFNj9MwEHXD11K+unDkEpELQkvVdBHLBbECDnugokh0d6U6qhx3klrxR9aeLELe/A6u8LP4NzilB8LOwX5+M/b4vclrKRxOJr8H0Y2bt27f2bs7vHf/wcNHo/3Hp840lsOCG2nsec4cSKFhgQIlnNcWmMolnOXVhy5/dgnWCaO/4vcaMsVKLQrBGQYqozmzns5Fu/Kf2tUomYwn24ivg3QHErKL+Wp/UNG14Y0CjVwy55bppMbMM4uCS2iHQ9o4qBmvWAmeKacYbg7CXhiNrp9eNli8ybzQdYOgeZfU8I0bpZhe05n3tLvMmYxnbdvLWXBol9PM+2EcUwkFjmkFVr+kupFyHaxRAoMFoRHEoSRJu5Ve1hum0ShPc1FetVvOinKDVyufTLfnrtFHCMoszELzzzVYhsa+8JTZUgndBqUlPehQT2n3UzRGuj6d5yo8+6/mmtlCSJn5AFwl6lDvIMxQl7jxNJBCr4O3rQ+2duNJ/x/GdXA6HaeH4+mXV8nx+92g9shT8ow8Jyk5IsfkhMzJgnByQX6Qn+RXNIpeR2+jd39Lo8HuzhPSi+jkD7/wyBo=</latexit>

⇧L
<latexit sha1_base64="2DIJRfzbJJsaaZKgt1jdMgckdcI=">AAACiHicZVFNj9MwEHXD1xK+duHIJSIXhJYq6SIt3FYLBw5UFIluV6qjynGnqRV/RPZkEfLmR3CFX8a/wSk9EHYO9vN7Y4/fTNlI4TDLfo+iW7fv3L13cD9+8PDR4yeHR08vnGkthzk30tjLkjmQQsMcBUq4bCwwVUpYlPX7Xl9cgXXC6K/4vYFCsUqLjeAMA7WgM7Hyn7rVYZqNs10kN0G+BynZx2x1NKrp2vBWgUYumXPLPGuw8Myi4BK6OKatg4bxmlXgmXKK4fY47Buj0Q3lZYubt4UXumkRNO9FDd+4UYrpNZ16T/vLnMlk2nUDzYJDu5wU3sdJQiVscExrsPo11a2U69AUJTCYD4UgCSlp3q/0qtkyjUZ5WorquttxVlRbvF75dLI794U+QHBmYRqKf27AMjT2lafMVkroLjit6HGPBk77n6Ix0g3pslTh2X89N8xuhJSFD8DVogn5DsL0dIVbTwMp9Dr0tvOhrf148v+HcRNcTMb5yXjy5U16dr4f1AF5Tl6QlyQnp+SMfCQzMiec1OQH+Ul+RXGURafRu7+p0Wh/5xkZRHT+B2j7xVU=</latexit>

⇧<latexit sha1_base64="rsqw/WWZWKE4Y5adYdiK/LJP2NY=">AAAChHicZVFNj9MwEHUDLEv52oUjl4hcECpV0gXBCa2AA5eKIujuSnVUOe4kteKPyJ4sQt78BK7w2/g3OKUHws7Bfn5v7PGbKRopHKbp71F04+atg9uHd8Z3791/8PDo+NGZM63lsORGGntRMAdSaFiiQAkXjQWmCgnnRf2+188vwTph9Ff83kCuWKVFKTjDQH2hC7E+StJpuov4Osj2ICH7WKyPRzXdGN4q0Mglc26VpQ3mnlkUXEI3HtPWQcN4zSrwTDnFcDsJe2k0uqG8arF8k3uhmxZB817U8I0bpZje0Ln3tL/MmYznXTfQLDi0q1nu/TiOqYQSp7QGq19Q3Uq5CQ1RAoPxUAjikJJk/Uovmy3TaJSnhaiuuh1nRbXFq7VPZrtzX+gDBGcW5qH4pwYsQ2Ofe8pspYTugtOKTno0cNr/FI2RbkgXhQrP/uu5YbYUUuY+AFeLJuQ7CJPTFW49DaTQm9Dbzoe2dmE82f/DuA7OZtPsZDr7/DI5fbcf1CF5Qp6SZyQjr8kp+UgWZEk4qcgP8pP8ig6iSXQSvfqbGo32dx6TQURv/wBU3sOK</latexit>

⇧0
<latexit sha1_base64="4MdV3/o9TKmDiSeKvoG+gq/0bnI=">AAACh3icZVHLctMwFFXMo615tbBk48EbhinBDkzpsjwWbDKEGZJ2JjIZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl2W/R9GNm7du7+0fxHfu3rv/4PDo4cKq1lCYU8WVuSiJBc4kzB1zHC60ASJKDudl867Xzy/BWKbkZ/ddQyFILVnFKHGBWuAZ+5LFq8M0G2fbSK6DfAdStIvZ6mjU4LWirQDpKCfWLvNMu8IT4xjl0MUxbi1oQhtSgyfCCuI2x2GvlHR2KC9bV50WnkndOpC0FyV8o0oIItd46j3uL1PCk2nXDTQD1pnlpPA+ThLMoXJj3ICRz7FsOV+HngjmgvdQCJKQkub9ii/1hkinhMclq6+6LWdYvXFXK59Otue+0HsIzgxMQ/GPGgxxyjzzmJhaMNkFpzU+7tHAaf9TpxS3Q7osRXj2X8+amIpxXvgAbMN0yLcQhidrt/E4kEyuQ287H9rahfHk/w/jOlhMxvnL8eTTq/Ts7W5Q++gxeoKeohy9RmfoA5qhOaLoK/qBfqJf0UH0IjqJTv+mRqPdnUdoENGbPwuDxEA=</latexit>

<latexit sha1_base64="6m+RfNUfgpXEqT3LgfBfsDfcw7M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh15D9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAiC422</latexit>

⇧

Fig. 9. The point insertion algorithm for a cubic curve (left side only). The
control polygon Π̄L (light blue) defining the left side of the curve upon
split at P̄t is built by shortening the first segment of Π0 (dark blue) and
extending the last segment of ΠL (purple).

t̄ · d(P0,P1) from P0. Now we place P̄2 in such a way that, once
Π̄L is split at the parameter corresponding to P′, the polygon ΠL
is generated as its right sub-polygon. The parameter of P′ with
respect to the sub-curve from P0 to P̄t is t ′/t̄, thus we have

d(P̄t ,PL.2) = (1− t ′

t̄
) ·d(P̄t , P̄2).

Therefore, we conclude that P̄2 is obtained by extending the
geodesic line from P̄t to PL,2 for a length d(PL,2, P̄t) · t ′

(t̄−t ′) .
While we do not provide any bound on the approximation of

the input curve, we tested this algorithm on many curves and the
results were mostly very close to the input. Except, as all other
editing operations (e.g., dragging control points) a split may cause
a jump of one sub-curve, discussed in Sec. 3.7. Jumps can be easily
recovered either with further splits or by dragging the handle points
that control tangents. Notice that, for practical applications, point
insertion is aimed at adding more degrees of freedom to the spline:
interpolation of pinned points and control of tangents at them are
in fact all a designer requires.

4.2 Algorithms for the OLR scheme
4.2.1 Curve tracing
For uniform subdivision, our OLR scheme can be easily expanded
up to a certain level n̄, and the curve approximated with the
geodesic polygon Πn̄. The maximum expansion level n̄ is set as
in the corresponding RDC algorithm. At each level of subdivision,
we obtain the vertices of the refined polygon by applying the
subdivision stencils of Equations 9 and 10. The construction of the
third level of subdivision is shown in Fig. 7 (OLR).

Notice that the uniform subdivision, as described above, defines
a (virtual and infinite) binary tree of intervals, that we call the
expansion tree: the root of the expansion tree corresponds to the
whole interval [0,1], while a generic node [t i

j, t
i
j+1] at level i is

split in the middle into two intervals at level i+ 1. The node
[t i

j, t
i
j+1] encodes a segment of B-spline, defining the curve in

the corresponding interval, with control points (Pi
j−3, . . . ,P

i
j). One

more level of subdivision splits this interval into two sub-intervals
[t i+1

2 j , t i+1
2 j+1] and [t i+1

2 j+1, t
i+1
2 j+2] and generates 5 new control points,

which depend just on (Pi
j−3, . . . ,P

i
j): the first 4 points are associated

to the interval to the left, and the last 4 to the interval to the right,
with an overlap of 3 control points between the two sets. The
expansion tree is defined implicitly and it needs not being encoded.

We exploit the structure of the expansion tree to design an
algorithm for adaptive subdivision, which is controlled by the same
stopping criterion used for the RDC scheme, i.e., we stop the
expansion of a node as soon as the angle between consecutive
segments of the polygon is small enough. The algorithm corre-
sponds to visiting a subtree of the expansion tree in depth-first
order; a leaf of the subtree is a node of the expansion tree where
we stop recursion. During the visit, at each internal node, we split
the interval as described above, and generate the control points for
its two children to continue the expansion; while at each leaf, we
generate the nodes of the output polygon.

Depth-first traversal guarantees that leaves are visited left to
right: the leftmost leaf in the expansion tree is the first one to
produce an output, adding all its control points; all other leaves
add just their rightmost control point to the output. The final
approximation of the curve is obtained by connecting the output
points pairwise with shortest geodesic paths.

Note that, it is not necessary to encode the subtree visited by the
algorithm. It is just sufficient to encode the path in the expansion
tree connecting the root to the current node, storing at each node
its corresponding interval, and its control polygon.

4.2.2 Point evaluation
The point evaluation algorithm is analogous to the one for the
RDC scheme, by descending a path in the expansion tree described
above. Given interval [t i

j, t
i
j+1] containing t̄ at subdivision level i,

we only need to compute, with the proper stencils, the 4 points
corresponding to its sub-interval containing t̄ at the next level.

Once recursion stops, we assume that all pairs of consecutive
control points in the current interval lie in a totally normal ball.
Here we evaluate the curve directly with a manifold version of the
de Boor algorithm [3], which works on repeated averages and can
be obtained by substituting the affine averages with the manifold
average A , just like the direct de Casteljau evaluation.

The same remarks we made for the RDC scheme about
approximation and convergence in the limit apply here, too.

4.2.3 Point insertion
This algorithm is analogous to the one described for the RDC
scheme. We descend the recursion tree as in the point evaluation
algorithm. When reaching the leaf containing the splitting point
P̄t , we convert the control polygon of the uniform B-spline in that
leaf into the corresponding control polygon of the Bézier curve, by
applying the well known conversion formula [39](Sec.7.5), where
affine averages are substituted with the manifold average A . Then
we proceed as described for the RDC scheme.

5 IMPLEMENTATION AND USER INTERFACE

We implemented the algorithms described in the previous section
for discrete surfaces represented as triangle meshes, targeting
interactivity for long curves and meshes of millions of triangles. Our
algorithms are implemented on top of a few geodesic operations
that we describe in this section together with operations required to
support the user interface. All operations are implemented in C++
and released as open source in [49].

5.1 Geodesic primitives

Data representation: We encode a triangle mesh with
an indexed data structure consisting of three arrays for vertices,

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

triangles, and triangles adjacencies, which also provide the dual
graph having the triangles as nodes. We encode points lying on
the mesh with their triangle index and barycentric coordinates. A
geodesic path is encoded with an array of indices to the triangle
strip crossed by the path, and an array of real values that encode
the intercept of the path with the transversal edges in the strip.

Point-to-point shortest path: Our algorithm to compute
locally shortest geodesic paths is derived by combining insights
from the works of Lee and Preparata [50] and Xin and Wang [51].
The algorithm consists of three phases: (i) extraction of an initial
strip; (ii) shortest path in a strip; and (iii) strip straightening.

Phase (i), which has been overlooked in several previous works,
is critical as it can become the bottleneck on large meshes (see, e.g.,
the discussion in [33] 5.2.1). Given two mesh points P and Q, we
compute a strip of triangles that connects them, performing a search
on the dual graph. We experienced a relevant speedup over the
classical Dijkstra search by using a shortest path algorithm based
on the small-label-first (SLF) and large-label-last (LLL) heuristics
[52], which do not require a priority queue, but just a double ended
queue. The SLF heuristics adds a new node to either the front, or
the back of the queue, according to the estimated distance of that
node, compared to the distance of the first node in the queue. The
LLL heuristics moves a node from the front to the back of the
queue if its distance is larger than the average distance of nodes
in the queue. Besides, we weight each node as in a classical A*
search, with the sum of its current distance from the source plus
its Euclidean 3D distance to the target. This heuristic prioritizes
the exploration of triangles closer to the destination in terms of
Euclidean distance, improving performance on most models.

In phase (ii), the strip is unfolded in the 2D plane and the
shortest path within it is computed in linear time with the funnel
algorithm [50]. See Fig. 10(a-b-c) for an example.

In phase (iii), in order to obtain the locally shortest path on the
mesh, we remove reflex vertices from the strip where possible. To
this aim, Xin and Wang find the reflex vertices that can be removed
by computing angles about a vertex inside and outside the strip,
respectively [51]. However, in our experiments, the computation
of angles slows down the algorithm, because the star of each
reflex vertex is retrieved from a data structure that is not in cache
memory. Instead, we select the reflex vertex v that creates the
largest turn in the polyline and, similarly to [51], we update the
strip by substituting the current semi-star of v inside the strip
with its other semi-star. We perform the unfolding and the funnel
algorithm on the new strip: if v still remains on the path, then it is
frozen; we repeat this procedure until all reflex vertices either are
removed or become frozen. See Fig. 10(d-e-f) for an example.

In Sec. 6.3, we compare this algorithm with an algorithm at the
state of the art [33], showing that we consistently beat it for about
one order of magnitude in speed. The breakup of times presented
in Fig. 23 suggests that the speed-up stems mostly from Phase (i).

Straightest geodesics and parallel trasport: We follow
Polthier and Schmies [53] to trace a geodesic starting at a mesh
point P and following one given direction u. This entails unfolding
the triangles of the strip crossed by the geodesic, and possibly
mapping the star of vertices crossed by the geodesic to their
tangent plane. We use an approach similar to Knöppel et al. [54] to
parallel transport vectors along curves. Again, the strip of triangles
traversed by the curve is unfolded, and local reference frames in the
strip are used to transport the vector along it. The implementation
of both techniques is straightforward.

Q

P

(a) (b) (c)

(f)(e)(d)

P P

P P

P

Q

v

Q Q

QQ

Fig. 10. Shortest path computation. Given a source P and a target Q
an initial strip of triangles is found with a search on the dual graph of
the mesh. (a) A shortest path within the strip is found by propagating a
funnel, which is initialized with its apex at P and its front at the first edge
crossing the strip. (b) The edges of the strip are processed one by one,
to tighten the front of the funnel. (c) When the funnel collapses, a new
vertex, called a pseudo-source, is added to the path and the apex of the
funnel is moved to the pseudo-source. (d) When Q is reached, some
reflex vertices may still lie on the path. (e) Reflex vertices are analyzed
for possible removal, starting at the vertex v causing the sharpest turn.
(f) The final path is found when no more reflex vertices can be removed.

5.2 User interface

Leveraging the proposed algorithms, we developed a graphical
application, demonstrated in the supplemental video, which allow
users to interactively edit cubic splines on meshes, with the same
interaction methaphors used in 2D vector graphics. Our application
supports moving, adding, and deleting control points, and by
translating, scaling and rotating whole splines on the surface
domain. Here we describe the main editing feature, referring the
reader to the supplemental video for a demonstration.

Curve editing: Borrowing the editing semantic from 2D
tools, control points are distinguished in anchor points and handle
points. Anchors are those points where two Bézier curves are joined,
while handle points are the ones preceding and following the anchor
points. We connect each handle point with its corresponding anchor
with a geodetic segment. A spline is tangent to those segments at
the anchor points. In the 2D setting, when an anchor is dragged, the
two tangent segments move with it and so do the associated handle
points. To obtain the same behavior on the surface, when moving
an anchor point from P to P′, we find the two tangent directions of
the tangent segments at P. Then, for each such segment, we trace
a straightest geodesics starting at P′ and for the same length of
the segment, in the direction of its tangent, rotated by the parallel
transport from P to P′. The endpoint of each segment is the new
position of the corresponding handle point. In the 2D setting the
user can impose an anchor to be ”smooth”, i.e. the two associated
tangent segments are always colinear, which automatically ensure
C1 continuity at the anchor point. To provide the same functionality
on the surface, whenever the handle point Q1 is moved, the opposite
handle point Q2 is recomputed by tracing a straightest geodesic
from the anchor P along the tangent direction defined from segment
Q1P to find the new position of handle Q2.

Rotation, Scaling and Translation: We support translation,
rotation and scaling of a whole spline. In the 2D settings these
operations are obtained by just applying the same affine transform
to all control points. In the surface setting, we define the transforma-
tion about the mesh point C under the mouse pointer. The normal
coordinates of the control points are computed with respect to C, in

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 11. Example of importing a large SVG, made of 2056 curves, onto
the pumpkin model, consisting of 394k triangles. Our algorithm takes 289
milliseconds to trace all curves.

a sort of discrete exponential map. Then, the linear transformation
is applied on these 2D coordinates, which are finally converted
back into mesh points by tracing straightest geodesic paths outward
from C. Translation needs special handling, as the center of the
transformation C is dragged to a new position C′. To compensate
for the change of reference frame, the normal coordinates are
rotated by the opposite angle of the parallel transport given by the
tangent vector from C to C′.

Importing SVG drawings: Sometimes, it is helpful to map
a collection of 2D splines onto the surface. To this aim, we map
the 2D control points onto surface, and then trace the splines on
the manifold. See Figures 1 and 11 and the accompanying video
for examples.We map control points with a method analogous to
Biermann et al. [12] that is based on the conversion between polar
coordinated in 2D and normal coordinates on the manifold. Each
control point of the SVG drawing is converted into a mesh point by
taking its polar coordinates, and tracing a geodesic from a center
point in the given tangent direction, for the given distance.

Notice that this is intended just as a rough initialization. Since
we map only the control points, the intersections between lines will
be preserved only at the interpolated points of the splines, while
they may differ elsewhere. The advantage here is that all distortions
and artifacts that might arise in this phase can be adjusted by
editing the result, which is provided in vector format directly on
the surface. While this would be impossible with parametrization
approaches that just map the discretized splines.

6 RESULTS AND VALIDATION

We validate our work by tracing curves over a large number of
meshes, by comparing it with state-of-the-art solutions, and by
performing interactive editing sessions. Our algorithms always
produce a valid output, in a time compatible with interactive usage
in over 99% of the trials (Table 1). We overcome the limitations of
state-of-the-art methods, producing valid results with any control
polygon on any surface (Fig. 18); and our running times are
comparable or faster than state-of-the-art methods (Table 2 and
Fig. 22). Our system supports editing for meshes of the order of one
million triangles on a laptop computer. Interaction is still supported
on meshes with several millions of triangles, provided that single
curves do not span too large a fraction of the model (see Figures 1
and 24, Table 3, and the accompanying video). Very long segments
are rare in actual editing sessions, as real designs are usually made
of many splines, each consisting of several small segments.

Fig. 12. Three views of a random curve generated during trials on a
model from the Thingi10k repository: in all experiments the control points
of each curve were randomly selected over the surface of the object.

6.1 Robustness and performance

We tested our algorithms for robustness by running a large
experiment on the Thingi10k repository [11]. We extracted the
subset of meshes that are manifold and watertight, for a total of
5567 models. The models are used as is, without any pre-processing.
For each model, we consider 100 random cubic curves. For each
curve, we take the model in its standard pose, and pick points on
it by casting random rays orthogonal to the view plane, until we
find four points that lie on the surface. These become the control
points of the curve. We place no restriction on the arrangement of
the control points. This gives us a total of more than half million
control polygons. Fig. 12 shows a random curve generated on one
of the objects during trials.

For each test, we run both the RDC and the OLR tracing
algorithms, in their uniform and adaptive configurations. The
uniform RDC algorithm is expanded to 4 levels of recursion,
which generates a geodesic polyline consisting of 48 geodesic
segments. The uniform OLR algorithm is expanded to 6 levels of
recursion, which generates a geodesic polyline consisting of 66
geodesic segments. In fact, because of the different subdivision
rules, we cannot generate the same number of segments for both
schemes. For the adaptive variants, we set a threshold θ = 5◦

for the maximum angle between consecutive geodesic segments
along the polyline. In this case, the number of geodesic segments in
output is variable, depending on the curve and on the method. Since
all algorithms generate very similar curves, the final tessellated
paths that approximate the curve on the mesh have about the same
number of segments in all four cases.

Since we have no ground truth to compare with, we indirectly
assess the correctness of the results with the following tests:

1) Termination: the algorithm must complete;
2) Continuity: all pairs of consecutive points along the output

polyline must lie either inside or on the edges of the same
triangle (notice that points on edges are forced by the
algorithm to go across adjacent triangles).

3) Smoothness: the angle between consecutive segments of the
polyline, measured in tangent space, must be lower than a
given threshold (5 degrees).

All our algorithms passed all the tests in all experiments.
Trials were executed on a Linux PC with an AMD Ryzen

5 2600x and 32GB memory, running on a single core. In Table

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

<0.1s<0.001s<0.1s<0.001s<0.1s<0.001s<0.1s<0.001s

Fig. 13. The distributions of running times of our four algorithms for curve tracing in 556,700 trials on 5,567 models from the Thingi10k repository,
tracing 100 random curves on each model. All algorithms provide a valid output in all trials. The different algorithms have similar behavior and are
compliant with interaction (< 0.1 seconds/curve) in about 99% of the trials. For uniform subdivision, the OLR algorithm is slightly faster than the
RDC algorithm; while for adaptive subdivision, the RDC algorithm performs slightly better than the OLR algorithm. Adaptive algorithms have slightly
narrower distributions than uniform algorithms.

1 and Fig. 13, we compare the timing performance of the four
algorithms. All algorithms perform quite similarly, and remain
interactive in all cases, with roughly 40% of trials running at less
than 1 millisecond per curve, and 99% of the trials running faster
than 0.1 second/curve. The few trials in which they take more time
are concerned, with very few exceptions, either with very long
curves on large meshes (>1M triangles), or with meshes containing
many topological holes, in which finding shortest paths between
points is more expensive.

There are small differences in the performances of the different
algorithms. For uniform subdivision, the OLR algorithm generates
results as fast as the RDC algorithm, beside generating a more
refined geodesic polyline. For adaptive subdivision, the RDC
algorithm runs slightly faster than the OLR algorithm. These
differences are probably due to the simpler structure of the OLR
uniform algorithm in one case, and to the more involved structure of
the OLR adaptive algorithm in the other. In fact, both variants of the
RDC algorithm follow the same recursive pattern. On the contrary,
the OLR uniform algorithm expands the curve level by level,
following a simpler pattern; while the OLR adaptive algorithm
requires a recursive pattern, with a slightly more involuted structure
than the RDC algorithms.

In the previous experiments, the cost of computing a curve
depends on both the length of the curve and the size of the mesh,
with trends that are not linear. Roughly speaking, the cost of finding
the initial path depends on both the length of the curve and the size
of the mesh, while the subsequent cost of finding the shortest path
depends just on the length of the curve. As the relative length of
the curve grows, the cost of finding the initial path prevails, since it
may requires exploring most of the mesh. Statistics on the relative
costs of the two phases are shown in Fig. 23.

For the sake of brevity, we do not present here results on the
algorithms for curve tracing and point insertion, which run much
faster than the tracing algorithms.

6.2 Sensitivity to the input mesh

All the algorithms presented in Sec. 5.1 are driven by the
connectivity of the underlying mesh. In particular, all intersections
between the traced lines and the mesh are computed locally to
each triangle and forced to lie on its edges, so that each traced line
consistently crosses a strip of triangles. With this approach, we
could process even meshes containing nearly degenerate triangles,

algorithm percent of trials times at percentile
< 0.001s < 0.1s 90% 99%

RDC Uniform 43.1% 99.0% < 0.0122 < 0.097
OLR Uniform 44.7% 98.9% < 0.0123 < 0.105
RDC Adaptive 43.9% 99.0% < 0.0120 < 0.095
OLR Adaptive 30.0% 98.1% < 0.0215 < 0.185

TABLE 1
Time performances of our algorithms in 556,700 trials. We report the
percentage of trials in which tracing a curve takes less than 0.001 and
0.1 seconds, and the running times at the 90th and 99th percentiles.

Fig. 14. The shortest path algorithm is driven by mesh connectivity
and uses a refined dual graph, providing correct results even on highly
anisotropic meshes containing long edges and narrow angles.

with angles near to zero and edge lengths near to the machine
precision, by relying just on floating point operations, without
incurring in numerical issues. While this is usually not the case
with models used in a production environment, such meshes are
common in the Thingi10k repository and provide stress tests for
the robustness of our algorithms.

On the other hand, our algorithm for point-to-point shortest path
assumes the initial guess obtained during Phase (i) to be homotopic
to the result. This assumption is common to all algorithms for
computing locally shortest paths, and it is reasonable as long as
the mesh is sufficiently dense and uniform with respect to the
underlying surface [33]. If, conversely, the mesh is too coarse and
anisotropic, then Phase (i) may provide an initial guess, which

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 15. Curves traced by positioning the control points in a similar way
on two meshes representing the same object, one consisting of ∼ 700
triangles (left) and the other consisting of ∼ 70k triangles (right). Our
method produces similar curves in both cases.

Fig. 16. Curves traced on a mesh with boundary. The three curves have
different anchor points and the same handle points on the front of the
shirt (black bullets). The green and the red curves are constrained to
partially follow the boundary at the neck.

cannot be homotopically shortened to the correct solution. In this
case, a naive application of the algorithm may get stuck in local
minima of the space of shortest paths, leading to a wrong curve.

This limitation is quite rare in practice for meshes used in
design applications, which is our target, but did happen for some
meshes in the Thingi10k dataset. We overcome this limitation
simply by creating a more accurate graph for computing the initial
guess when dealing with meshes with long edges.

When we build the dual graph to be used in Phase (i), we split
mesh edges that are too long at their midpoint, until all edges are
shorter than a given threshold, and we symbolically subdivide their
incident triangles accordingly. We chose the 5% of the diagonal
of the bounding box of the model as threshold. Note that this
subdivision is done just for the purpose of building the graph,
without changing the underlying mesh. In this augmented graph, a
single triangle may be represented by multiples nodes, giving us a
more accurate approximation of paths. This approach has the effect
of densifying the graph without changing the mesh upon which
we run Phase (ii). Once the strip is computed on the augmented
graph, we reconstruct the strip on the mesh using the graph’s node
provenance, i.e. the mesh triangle corresponding to each node,
which we store during initialization. Fig.14 shows examples on
highly anisotropic meshes from the Thingi10k repository.

An alternative approach to cope with the same problem would
be to pre-compute an intrinsic Delaunay triangulation in the sense
of [55] and do all computations by using intrinsic triangulations.

Fig. 17. Splines traced on meshes with many creases or bumps. Our
algorithms work in the intrinsic metric of the surface and are oblivious of
normal curvature caused from the embedding.

model WA ours (OLR)
name triangles pre-proc. (s) tracing (ms) tracing (ms)

cylinder 10k 54 2–2 1–1
kitten 37k 234 3–3 3–3
bunny 140k 665 2–2 10–12
lion 400k 2316 3–3 4–24
nefertiti 496k 2571 6–64 25–67

TABLE 2
Compared time performances of curve tracing with the WA method and

our OLR, on the curves shown in Fig. 18 and Fig. 19. Each curve is
sampled at 67 points; curve tracing times are averaged on each curve

repeating tracing 1000 times per curve; we report minimum and
maximum times over the different curves shown in the images.

Coarse meshes, boundaries, bumps and creases: Our
algorithms are insensitive to the resolution of the mesh and work
equally well on coarse as well as refined meshes. Fig. 15 shows
similar curves obtained on two meshes representing the same shape
at two very different resolutions. We can draw curves on meshes
with boundaries, too, as shown in Fig. 16. In this case, some
shortest paths, hence the curves they generate, may be constrained
to follow convex portions of the boundary. Since our algorithms
work in the intrinsic metric of the surface, they are insensitive to
creases and bumps, as shown in Fig. 17.

Fig. 18. Comparisons between the WA method [17] (green curves) on
ours (red curves); control polygons in blue. The WA curves may contain
heavy artifacts (bunny), lose tangency at the endpoints (bunny, nefertiti),
or be broken (kitten, lion, nefertiti).

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

model control subdivided time (ms)
name triangles polygons segments total per curve

veil 132k 2 402 2.3 1.1
arm 145k 2 856 35.6 17.8
boot 175k 2 755 21.1 10.5
deer 227k 4 1511 21.8 5.4
lady 281k 9 1917 11.4 1.2
car 282k 2 670 28.0 14.0
pumpkin 394k 5 1750 30.0 6.0
rhino 502k 7 2395 39.8 5.6
owls 641k 14 3224 20.8 1.4
alexander 699k 5 1560 20.5 4.1
vase 754k 8 1677 9.0 1.1
nike 5672k 7 4147 253.8 36.2

nefertiti 496k 463 64110 73.4 0.2
dragon 7218k 221 60656 761.7 3.4

TABLE 3
Time performances for curve tracing on the models in Fig. 24 and in the
teaser, using the uniform OLR algorithm with 5 levels of subdivisions. We
report the total time of computing all the curves and the average time of

computing a single curve. For all the reported models, our algorithm
achieves performance compatible with real-time editing, since the time

per curve is at most in the order of tens of milliseconds.

Fig. 19. Evolution of a curve while dragging handle points about a cylinder
(top to bottom, rotated views left to right) with the WA method [17] (green
curves) and ours (red curves). Our curve jumps from the “reversed S”
configuration to the spire and remains stable throughout. The WA curve
is stable only in the “reversed S” configuration, next it breaks, then it
forms a spire, and eventually it breaks again.

6.3 Comparison with the state-of-the-art

Weighted Averages (WA) [17]: Panozzo et al. presented
a method to estimate the RCM on a surface, by approximating
the geodesic distance on the input mesh M with the Euclidean
distance on a higher-dimensional embedding of M [17]. Given a set
of control points and weights, instead of resolving our Eq. 3 on M,
they compute the standard affine average of Eq. 1 in the embedding
space. Then they use a special technique, called Phong projection,
to bring the resulting space curve to the embedded mesh. Finally
they recover the corresponding points on M. We compare with this
technique by using the implementation provided by the authors,
with the same sampling used in our experiments.

The embedding and the data structures to support Phong
projection are computed in a pre-processing step, which is quite
heavy in terms of both time and space, and can hardly scale to
large datasets (see Table 2). We managed to pre-process datasets
up to about 500K triangles, but we could not process some of the
larger datasets we use in our work, because memory limits were
exceeded. The embedding is built by sampling a small subset of the
vertices first (fixed to 1000 by the authors), computing all-vs-all
geodesic distances on M for such subset, and embedding such

Fig. 20. The same curves of Fig. 18 on the kitten and bunny models
have been traced with the RMC based on vector heat [35]. Some results
are either discontinuous or highly perturbed because of non-convex
configurations with multiple local minima.

vertices in a 8D Euclidean space by keeping their mutual Euclidean
distances as close as possible to their geodesic distances on M. The
remaining vertices are embedded next, by using the positions of
the first embedded vertices as constraints. The connectivity of M is
preserved, and the positions of vertices are optimized, so that the
distances between adjacent vertices remain as close as possible to
their distances on M.

The online phase of WA is very fast, and it is insensitive to the
size of the input and the length of the curve (see Table 2). However,
we experienced a case that took one order of magnitude more
time than the others. We conjecture this is due to some unlucky
configuration for the Phong projection, slowing its convergence.
On the contrary, the performance of our method is dependent on
both the size of the dataset and the length of the curve, being
faster than WA on small datasets and shorter curves, and slower on
large datasets and long curves. In terms of speed, both methods are
equally compatible with interaction on the tested models.

Concerning the quality of the result, the smoothness of the
WA embedding, which is necessary to guarantee the smoothness
of the Phong projection, cannot be guaranteed, hence the WA
method suffers of limitations similar to the RCM method analyzed
in Sec. 3.4. As soon as the segments of the control polygon become
long, relevant artifacts arise, and the curve may even break into
several disconnected segments. Some results obtained with the
WA method, compared with our results, are shown in Figures
18 and 19. In particular, Fig. 19 exemplifies the behaviors of
the two methods as a control polygon becomes larger. While
our curve remains smooth and stable throughout, except for the
necessary jump between the “reversed S” and the spire, the WA
curve becomes unstable and breaks in most configurations where
the control points are far apart.

RMC based on vector heat [35]: Sharp et al. presented the
vector heat method, which supports the efficient computation of the
log map at an arbitrary point on the surface [35]. Algorithm 3 in the
same paper uses such a log map to estimate the RCM by gradient
descent, starting at an initial guess and iteratively converging to
the point that minimizes the same energy of our Eq. 3. We have
implemented the algorithm for tracing a Bézier curve defined with
the RCM, by using the authors’ implementation of the vector heat,
and plugging their Algorithm 3 into a loop, where parameter t
of Eq. 7 varies between 0 and 1, and the point returned at each
iteration is taken as initial guess to the next. Figures 20 and 21
show examples of failure, where curves are either discontinuous

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Fig. 21. Left: A curve traced with the RCM based on vector heat [35] has
a big jump. Center (zoom-in): the gradient of the energy (blue needles)
corresponding to the last point of the left branch, where two minima are
present (black circles). Right (zoom-in): gradient field corresponding to
the first point of the right branch, just one minimum has remained, which
is found by gradient descent, causing the jump. Curve tracing occurs
from left to right.

or highly perturbed, because the energy has more than one local
minimum for certain values of t. The zoom-ins of Fig. 21 show
the gradient fields before and after the jump. We remark again that
such failures stem from an intrinsic limitation of the RCM and are
independent of the method for computing it. Concerning efficiency,
this algorithm requires computing a log map at each iteration during
gradient descent, thus becoming rather slow when applied to curve
tracing. We do not report the detailed time performance of this
method, which takes minutes to evaluate a few tenths points on a
curve in the reported examples.

RDC based on flipOut [32], [33]: Sharp and Crane
proposed recently the flipOut algorithm as a fast solution to the
computation of locally shortest geodesic paths [33]. On the basis
of the flipOut algorithm, the same authors have implemented the
algorithm of [29], which uses the same recursive scheme of our
RDC algorithm for curve tracing [32].

While our algorithms have no limitations, and could provide
a valid output in all 556,700 trials, the algorithm in [32] requires
that the control polygon does not contain self-intersections, a case
which is pretty common with cubic curves, and happens in 33%
of the randomly generated polygons. This is due to an intrinsic
limitation of the flipOut algorithm, which was discussed in [33].

We have used the authors’ implementation [32] to run the same
experiments of Sec. 6.1, with the same parameter used for our RDC
algorithm with uniform expansion. Because of the above limitation,
we excluded from the comparison all the trials for which their
algorithm could not provide an output, keeping a total of 78,854
out of 556,700 trials. From a visual inspection of random samples
of the results, it seems that both their algorithm and ours generate
the same curves. In Fig. 22, we present a comparison between the
performances of the two algorithms. Our RDC uniform algorithm
exhibits a speedup of more than 10x on average.

Shortest paths: comparison with flipOut [33]: The
speedup in the previous experiment is totally due to our shortest
path algorithm described in Sec. 5.1. Note that the flipOut algorithm
is one of the fastest available at the state of the art for computing
locally shortest paths [33]. We compared the two algorithms by
substituting the authors’ implementation of flipOut [32] in our
curve tracing algorithm in all the trials above, and measuring the
times necessary just for the shortest path computations in the two
cases. The comparison is shown in Fig. 23. Indeed, on average,
our algorithm is one order of magnitude faster than flipOut. More
precisely, while the times for path shortening (Phases (ii) and (iii)
of our algorithm) are comparable with those of flipOut, our speedup
is mostly due to the computation of the initial guess (Phase (i)),

10x 1x100x

Fig. 22. The graph shows the distribution of the ratio of the running
times between our RDC uniform algorithm and the implementation from
[32], which is based on the flipOut method for computing geodesics
[33]. Here we report only the 78,854 trials, out of 556,700, for which [32]
could provide an output. On average, our RDC algorithm implementation
provides more than a 10x speedup over [32].

which is a well known bottleneck for all this class of algorithms.

6.4 Interactive use

We have used extensively our system on a variety of models. All
editing sessions where performed on a MacBook laptop with a
2.9GHz Quad-Core Intel Core i7 with 16GB memory, running on
a single core.

Fig. 24 presents a gallery of curves drawn interactively on
objects picked from the Thingi10k collection. Statistics for each
example are summarized in Table 3. Interaction is quite intuitive,
being supported with a GUI that mimics the drawing of spline
curves in standard 2D systems, as described in Sec. 5.2. The most
tricky aspects, with respect to the standard 2D case, are concerned
with using tangents that consist of geodesic lines instead of straight
lines. In our experience, the use of geodesic tangents, which is
intrinsic to the manifold metric, becomes intuitive quickly.

We have stressed our system by working on very large meshes
as shown in Fig. 1. Even on meshes of a few million triangles, our
implementation remains interactive, as shown in Table 3.

7 CONCLUDING REMARKS

We propose methods for interactively drawing and editing of Bézier
curves on meshes of millions of triangles, without any limitation on
the curve shape and extension of control polygons. Our algorithms
are robust, having been tested on over five thousands shapes
with over half a million randomly generated control polygons,
and they are compatible with interactive usage even on large
meshes. Both subdivision schemes we have presented are simple
to implement and produce C1 splines. The Open-uniform Lane-
Riesenfeld scheme provides the smoothest practical solution so far
for Bézier segments in the manifold setting. It remains an open
question how such segments could be chained to obtain C2 Bézier
splines.

The main limitation of these methods lie in the discontinuities
of the space of curves with respect to their control points: curves are
always smooth, but they may jump between different configurations
during editing. Such a discontinuity is inherent of the geodesic
metric, and it can be overcome by using a spline with shorter
control polygons, instead of a single large polygon, to define the
curve. Our algorithms for point insertion greatly help in this task.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

10
5

10
3

10
1

10
1

ratio between our time and [Sharp et al. 2019a]'s time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

de
ns

ity
Initial guess comparison with [Sharp et al. 2019a]

10
5

10
3

10
1

10
1

ratio between our time and [Sharp et al. 2019a]'s time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

de
ns

ity

Path shortening comparison with [Sharp et al. 2019a]

10
2

10
1

10
0

10
1

10
2

10
3

10
4

ratio between time for initial guess and shortening

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

de
ns

ity

Path computation of [Sharp et al. 2019a]

10
2

10
1

10
0

10
1

10
2

10
3

10
4

ratio between time for initial guess and shortening

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

de
ns

ity

Path computation of our algorithm

Fig. 23. Left (2 charts): On average, our algorithm for shortest paths beats by one order of magnitude the flipOut algorithm: the speedup is related to
the computation of the initial guess, while the two algorithms have comparable speed for the path shortening stages. Right (2 charts): The initial
guess is a bottleneck for both algorithms, but the ratio between the different stages is much more favorable for our algorithm.

Fig. 24. A gallery of models and splines drawn with our method. Both smooth (C1) and corner (C0) continuity at junction points are exemplified. The
selected models span a wide range of shapes and the sizes of meshes vary between about 130k and 5.7M triangles.

In the future, we want to consider other types of splines.
An extension of our approach to B-splines is straightforward.
An extension to interpolating splines seems easy, but it requires
manifold extrapolation, which may become unstable. The most
complex extension would be to handle NURBS, which at this
point remains unclear how to do. More generally, the smoothness
analysis in the non-uniform case needs a thorough investigation.

REFERENCES

[1] “Adobe illustrator,” Adobe inc., 2019. [Online]. Available:
https://adobe.com/products/illustrator

[2] “Scalable vector graphics,” W3C, 2010. [Online]. Available:
https://www.w3.org/Graphics/SVG/

[3] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[4] G. Nazzaro, E. Puppo, and F. Pellacini, “geoTangle: Interactive design of
geodesic tangle patterns on surfaces,” ACM Trans. Graph., 2021.

[5] M. Poerner, J. Suessmuth, D. Ohadi, and V. Amann, “adidas TAPE: 3-d
footwear concept design ,” in ACM SIGGRAPH 2018 Talks. New York:
ACM Press, 2018, pp. 1–2.

[6] C. Mancinelli and E. Puppo, “Vector graphics on surfaces using straight-
edge and compass constructions,” Computers & Graphics, 2022.

[7] L. Noakes, “Nonlinear corner-cutting,” Adv. in Comp. Math., vol. 8, no. 3,
pp. 165–177, 1998.

[8] T. Duchamp, G. Xie, and T. Yu, “Smoothing nonlinear subdivision
schemes by averaging,” Numerical Algorithms, vol. 77, no. 2, pp. 361–379,
2018.

[9] J. Wallner and H. Pottmann, “Intrinsic subdivision with smooth limits for
graphics and animation,” ACM Trans. Graph., vol. 25, no. 2, pp. 356–374,
2006.

[10] F. De Goes, M. Desbrun, M. Meyer, and T. DeRose, “Subdivision exterior
calculus for geometry processing.” ACM Trans. Graph., vol. 35, no. 4,
2016.

[11] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-printing
models,” 2016.

[12] H. Biermann, I. Martin, F. Bernardini, and D. Zorin, “Cut-and-paste
editing of multiresolution surfaces,” ACM Trans. Graph., vol. 21, no. 3,
pp. 312–321, 2002.

[13] P. Herholz and M. Alexa, “Efficient Computation of Smoothed Exponen-
tial Maps,” Comp. Graph. Forum, vol. 38, pp. 79–90, 2019.

[14] R. Schmidt, “Stroke Parameterization,” Comp. Graph. Forum, vol. 32, pp.
255–263, 2013.

[15] Q. Sun, L. Zhang, M. Zhang, X. Ying, S.-Q. Xin, J. Xia, and Y. He,
“Texture brush: An interactive surface texturing interface,” in Proc. ACM
SIGGRAPH Symp. Interactive 3D Graphics and Games. New York, NY,
USA: ACM, 2013, p. 153–160.

[16] R. Schmidt, C. Grimm, and B. Wyvill, “Interactive decal compositing

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

with discrete exponential maps,” ACM Trans. Graph., vol. 25, no. 3, pp.
605–613, 2006.

[17] D. Panozzo, I. Baran, O. Diamanti, and O. Sorkine-Hornung, “Weighted
averages on surfaces,” ACM Trans. Graph., vol. 32, no. 4, pp. 60:1–12,
2013.

[18] L. Noakes, G. Heinzinger, and B. Paden, “Cubic splines on curved spaces,”
IMA Jou. of Math. Control and Information, vol. 6, pp. 465–473, 1989.

[19] M. Camarinha, F. Silva Leite, and P. Crouch, “ Splines of class Ck on
non-euclidean spaces ,” IMA Jou. of Math. Control and Information,
vol. 12, no. 4, pp. 399–410, 1995.

[20] A. Arnould, P.-Y. Gousenbourger, C. Samir, P.-A. Absil, and M. Canis,
“Fitting Smooth Paths on Riemannian Manifolds: Endometrial Surface
Reconstruction and Preoperative MRI-Based Navigation,” in Geometric
Science of Information. Cham: Springer, 2015, pp. 491–498.

[21] P.-Y. Gousenbourger, C. Samir, and P. Absil, “Piecewise-Bezier C1
Interpolation on Riemannian Manifolds with Application to 2D Shape
Morphing,” in Proc. 22nd Int. Conf. on Pattern Recognition, 2014, pp.
4086–4091.

[22] P.-Y. Gousenbourger, E. Massart, and P. Absil, “Data Fitting on Manifolds
with Composite Bézier-Like Curves and Blended Cubic Splines,” Jou. of
Math. Imaging and Vision, vol. 61, pp. 1–27, 2018.

[23] M. Hofer and H. Pottmann, “Energy-minimizing splines in manifolds,”
ACM Trans, Graph., vol. 23, pp. 284–293, 2004.

[24] Y. Jin, D. Song, T. Wang, J. Huang, Y. Song, and L. He, “A shell space
constrained approach for curve design on surface meshes,” Computer-
Aided Design, vol. 113, pp. 24–34, 2019.

[25] H. Pottmann and M. Hofer, “A variational approach to spline curves on
surfaces,” Computer aided geometric design, vol. 22, no. 7, pp. 693–709,
2005.

[26] C. Samir, P. Absil, A. Srivastava, and E. Klassen, “A Gradient-Descent
Method for Curve Fitting on Riemannian Manifolds,” Foundations of
Comp. Math., vol. 12, no. 1, pp. 49–73, 2011.

[27] F. Park and B. Ravani, “Be´ zier curves on Riemannian manifolds and
Lie groups with kinematics applications,” Jou. of Mechanical Design, vol.
117, no. 1, pp. 36–40, 1995.

[28] A. Lin and M. Walker, “CAGD techniques for differentiable manifolds,”
in Algorithms for Approximation IV - Proc. Int. Symp. on Algorithms for
Approximation, J. Levesley, I. Anderson, and J. Mason, Eds. Huddlersfield
University, UK, 2001, pp. 36–43.

[29] D. Morera, P. Carvalho, and L. Velho, “Modeling on triangulations with
geodesic curves,” The Visual Computer, vol. 24, pp. 1025–1037, 2008.

[30] E. Nava-Yazdani and K. Polthier, “De Casteljau’s algorithm on manifolds,”
Computer Aided Geometric Design, vol. 30, no. 7, pp. 722–732, 2013.

[31] T. Popiel and L. Noakes, “Bézier curves and C2 interpolation in
Riemannian manifolds,” Jou. of Approximation Theory, vol. 148, no. 2,
pp. 111–127, 2007.

[32] N. Sharp, K. Crane et al., “geometry-central,” 2019, www.geometry-
central.net.

[33] N. Sharp and K. Crane, “You can find geodesic paths in triangle meshes
by just flipping edges,” ACM Trans. Graph., vol. 39, no. 6, pp. 249:1–15,
2020.

[34] P. Absil, P.-Y. Gousenbourger, P. Striewski, and B. Wirth, “Differentiable
Piecewise-Bézier Surfaces on Riemannian Manifolds,” SIAM Jou. on
Imaging Sciences, vol. 9, no. 4, pp. 1788–1828, 2016.

[35] N. Sharp, Y. Soliman, and K. Crane, “The vector heat method,” ACM
Trans. Graph., vol. 38, no. 3, pp. 1–19, 2019.

[36] J. Wallner, “Geometric subdivision and multiscale transforms,” in
Handbook of Variational Methods for Nonlinear Geometric Data, P. Grohs,
M. Holler, and A. Weinmann, Eds. Springer, 2020, pp. 121–152. [Online].
Available: http://www.geometrie.tugraz.at/wallner/subdiv-survey.pdf

[37] N. Dyn and N. Sharon, “Manifold-valued subdivision schemes based on
geodesic inductive averaging,” Journal of Computational and Applied
Mathematics, vol. 311, pp. 54–67, 2017.

[38] N. Dyn, R. Goldman, and D. Levin, “High order smoothness of non-linear
Lane-Riesenfeld algorithms in the functional setting,” Computer Aided
Geometric Design, vol. 71, pp. 119–129, 2019.

[39] D. Salomon, Curves and surfaces for computer graphics. New York:
Springer, 2006.

[40] M. do Carmo, Riemannian Geometry, ser. Mathematics. Boston,
Massachusetts: Birkhäuser, 1992.

[41] K. Grove and H. Karcher, “How to conjugate c1-close group actions,”
Mathematische Zeitschrift, vol. 132, pp. 11–20, 1973.

[42] H. Karcher, “Riemannian center of mass and mollifier smoothing,”
Communications on Pure and Applied Mathematics, vol. 30, no. 5, pp.
509–541, 1977.

[43] B. Afsari, “Means and averaging on riemannian manifolds,” Ph.D.
dissertation, University of Maryland, 2009.

[44] T. Sakai, Riemannian Geometry. Providence: American Mathematical
Society, 1997.

[45] L. Noakes, “Accelerations of Riemannian quadratics,” Proc. of the
American Math. Soc., vol. 127, no. 6, pp. 1827–1836, 1999.

[46] J. Lane and R. Riesenfeld, “A theoretical development for the computer
generation and display of piecewise polynomial surfaces,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 2, no. 1, pp. 35–46, 1980.

[47] T. Cashman, N. Dodgson, and M. Sabin, “Non-uniform B-spline subdivi-
sion using refine and smooth,” in Mathematics of Surfaces XII - LNCS,
R. Martin, M. Sabin, and J. Winkler, Eds. Berlin Heidelberg: Springer,
2007, vol. 4647.

[48] J. Wallner, “Smoothness Analysis of Subdivision Schemes by Proximity,”
Constructive Approximation, vol. 24, no. 3, pp. 289–318, Nov. 2006.

[49] F. Pellacini, G. Nazzaro, and E. Carra, “Yocto/GL: A Data-Oriented
Library For Physically-Based Graphics,” in Smart Tools and Apps for
Graphics - Eurographics Italian Chapter Conference, M. Agus, M. Corsini,
and R. Pintus, Eds. The Eurographics Association, 2019.

[50] D. Lee and F. Preparata, “Euclidean shortest paths in the presence of
rectilinear barriers,” Networks, vol. 14, no. 3, pp. 393–410, 1984.

[51] S.-Q. Xin and G.-J. Wang, “Efficiently determining a locally exact shortest
path on polyhedral surfaces,” Computer Aided Design, vol. 39, no. 12, pp.
1081–1090, 2007.

[52] D. Bertsekas, Network optimization: continuous and discrete models.
Belmont, Massachusetts: Athena Scientific, 1998.

[53] K. Polthier and M. Schmies, “Straightest geodesics on polyhedral surfaces,”
in Mathematical Visualization. New York: Springer-Verlag, 1998, pp.
135–150.

[54] F. Knöppel, K. Crane, U. Pinkall, and P. Schröder, “Globally optimal
direction fields,” ACM Trans. Graph., vol. 32, no. 4, pp. 1–14, 2013.

[55] N. Sharp, Y. Soliman, and K. Crane, “Navigating intrinsic triangulations,”
ACM Trans. Graph., vol. 38, no. 4, pp. 55:1–16, 2019.

Claudio Mancinelli Claudio Mancinelli is a third year PhD student in
Computer Science at the University of Genoa. He got both his BSc and
his MSc in Applied Mathematics at the University of Genoa, respectively
in 2015 and 2017. He started his PhD in 2018 under the supervision
of Professor E. Puppo. His research interests are focused in Computer
Graphics, Geometry Processing, and Discrete Differential Geometry. One
of the purposes of his PhD thesis is to investigate how to interactively
produce and edit vector graphics on highly tessellated meshes.

Giacomo Nazzaro Giacomo Nazzaro is a third year PhD student in
Computer Science at the Sapienza University of Rome. He got his BSc
in Applied Mathematics and his MSc in Computer Science, respectively
in 2016 and 2018. In 2018 he started his PhD under the supervision
of Professor F. Pellacini, after a 6-month collaboration with him as
a research fellow. His research interests are in Computer Graphics,
Geometry Processing, and Rendering, with a focus on porting interactive
vector graphics design on dense meshes.

Fabio Pellacini Fabio Pellacini is a Professor of Computer Science at
Sapienza University of Rome. Before joining Sapienza, Prof. Pellacini
received his Laurea degree in Physics from the University of Parma, and
his PhD in Computer Science from Cornell University, and worked at
Pixar Animation Studios, Cornell University and Dartmouth College. For
his research contributions, Fabio received an NSF CAREER award and
an Alfred P. Sloan fellowship.

Enrico Puppo Enrico Puppo is a professor of Computer Science at
the Department of Informatics, Bioengineering, Robotics and System
Engineering of the University of Genova. Formerly, he has been a
research scientist in the National Research Council of Italy. Enrico
Puppo has co-authored about 150 peer-reviewed scientific publications in
spatial data handling, computer graphics, geometric modeling, geometry
processing, data visualization, shape analysis and understanding.

