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Figure 1: Results on the GaussHills synthetic dataset. Left: the original dataset encoded with double values in the range [−1907,4078]
has no flat spots and contains five maxima (red bullets), two minima (blue bullets), and six saddles (green bullets). Middle-left: the dataset
quantized at vertical resolution 100 consists of 96 flat spots, covering 100% of the surface; our algorithm detects the minimal number of
critical values compatible with its structure, and places them at or near their original locations; two critical points at the boundary (lower
right corner) are deleted by quantization. Middle-right: on the same quantized dataset, an algorithm that disambiguates flat spots by building
ramps based on the coordinates of points in the grid – as customary in most TDA systems – generates an enormous number of spurious critical
points. Right: a zoom reveals that the spurious points come in clusters at boundaries between adjacent flats; even if spurious critical points
were removed with persistence analysis, the survivors would be generally located incorrectly (e.g., the spot at the lower left corner should
contain a maximum in the middle, while it will be necessarily placed at its boundary).

Abstract

We consider Digital Elevation Models (DEMs) encoded as regular grids of discrete elevation data samples. When the terrain’s
slope is low relative to the data’s vertical resolution, the DEM may contain flat spots: connected areas where all points share the
same elevation. Flat spots can hinder certain analyses, such as topological characterization or drainage network computations.
We discuss the application of Morse-Smale theory to grids and the disambiguation of flat spots. Specifically, we show how to
characterize the topology of flat spots and symbolically perturb their elevation data to make the DEM compatible with Morse-
Smale theory while preserving its topological properties. Our approach applies equivalently to three different surface models
derived from the DEM grid: the step model, the bilinear model, and a piecewise-linear model based on the quincunx lattice.

1. Introduction

Topological data analysis (TDA) finds application in
many fields, such as computer graphics [WG09], scien-
tific visualization [Tie17], geographical information science
[DWW17, RJP17, XIDF20], environmental science [VMN∗19],
genomics [RB19], biomedicine [SL22], fluid dynamics

[GSW12, SWTH07], material science [GDN∗07], chemistry
[OSPGT20], just to mention a few. A recent account of the main
techniques in TDA can be found in [DW22].

The characterization of functions in terms of their critical points
is fundamental to powerful TDA tools, such as the Morse-Smale
complex and persistent homology [EH10, DW22, BDFFP08].
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Figure 2: A lake (dark region) in a DEM constitutes an intrinsic
flat spot since all its points are at the same elevation. An emissary
river (on the left) consists of a series of flat spots: changes of value
occur only where the difference in altitude exceeds data resolution.

However, these tools often rely on assumptions that may not hold
in real-world data. One crucial assumption, frequently violated, is
the absence of flat spots, regions where the function has a constant
value. Flat spots can be inherent in the data or arise due to quan-
tization, especially when numerical precision is low relative to the
data’s dynamic range. Consider topographic maps: the most accu-
rate, openly distributed global models currently have a horizontal
resolution of approximately 30 meters and a vertical resolution of
one meter [JAS16, NJ19, NAS00]. A lake on such a map represents
an intrinsic flat spot; in contrast, a river flowing through a plain has
an inherent slope, but it will be represented as a series of flat spots
if it is less steep than the lowest slope that can be expressed in the
model, depending on its vertical and horizontal resolution (Fig. 2).
In fact, any geographical area with a slope less than 1/30 will be
represented by a group of terraces in the aforementioned models,
with a banding effect. Counter-intuitively, a better horizontal reso-
lution paired with the same vertical resolution worsens the problem.

The presence of flat spots significantly complicates the direct ap-
plication of mathematical principles to real-world data, leading to
intricate algorithms and potential ambiguities, not just in TDA, but
also in other fields, e.g., hydrological analysis [NGS∗08]. Depend-
ing on its banks’ configuration, a lake can be categorized as either:
a sink, when all surrounding areas are at a higher elevation; a reg-
ular area, when a single stream flows out; or even a saddle area,
when multiple streams emanate from different boundary zones. In
contrast, a flat spot representing a river segment should always be
classified as a regular area, with its boundary divided into an upper
end, a lower end, and two side banks.

Several authors have attempted to mitigate the impact of flat
spots by adding random perturbations to the data. However, this ap-
proach introduces topological noise in the form of numerous spuri-
ous critical points. Other methods, such as those employing ramps
[RWS11], may also lead to spurious critical points and misclassify
flat spots (see Fig. 1). Magillo et al. [MDFI13] proposed a system-
atic approach to remove flat spots from Triangulated Irregular Net-
works (TINs) while preserving correct topology and avoiding spu-
rious critical points. Nonetheless, their classification of flat spots
is limited, and their algorithm is relatively complex, requiring the
discrimination of various cases. Inspired by their work, we address

the analysis of flat spots within Digital Elevation Models and, more
specifically, grid data. Our contributions are as follows:

1. We consider three continuous models for functions sampled on a
grid: the step model, the bilinear model, and the quincunx linear
model. We demonstrate that the classification of critical points is
equivalent for these models and that, unlike the standard simpli-
cial model for TINs, they cannot contain multiple saddles.

2. We introduce an algorithm for classifying the simplest topology
of flat spots.

3. We introduce an algorithm for the symbolic disambiguation of
flat spots, aligning with this classification. Specifically, we es-
tablish an ordering of neighboring data elevations within a flat
spot, leading to the desired singularities.

We evaluate our algorithms using both synthetic and real-world
datasets. To assess the impact of data resolution on our disambigua-
tion algorithm, we analyze various versions of the same datasets
captured at different vertical resolutions within the dynamic range.
Our goal is to demonstrate that the results obtained from lower-
resolution data align with those from higher-resolution data, which
typically contain fewer or no flat spots.

2. A continuous Morse model for grids

Morse theory and the Morse-Smale complex were originally de-
fined for smooth functions. We briefly summarize the basic con-
cepts, referring to [EH10, Mat02] for a more thorough formal treat-
ment of this subject. Next, we consider the application of such the-
ory to sampled data: we discuss the existing approaches and pro-
pose a continuous model, which applies to the most common rep-
resentations of functions from data on a grid.

2.1. Background

Smooth setting. A smooth function f : Ω⊂ R2 −→ R is a Morse
function if its critical points are isolated, or equivalently, if its Hes-
sian is non-zero at critical points. For a minimum p ∈Ω, the unsta-
ble submanifold is the set of points in Ω that lie on integral curves
of f originating from p. This region is bounded by separatrices,
which are integral curves connecting maxima and saddles. The un-
stable submanifolds partition Ω. Similarly, the stable submanifold
of a maximum q is the set of points on integral curves converging
to q, bounded by separatrices connecting minima and saddles. The
stable submanifolds also partition Ω. If these two partitions inter-
sect transversally, their overlay is called a Morse-Smale complex,
which can be represented by a planar graph with edges correspond-
ing to separatrices connecting saddles to maxima or minima.

Models for sampled data. Computing Morse-Smale complexes
for sampled data necessitates adapting the concept to discrete set-
tings. Two primary approaches exist:

1. Piecewise-Linear Approximation: In this approach, the smooth
function is approximated by a piecewise-linear signal interpolat-
ing values at the vertices of a simplicial complex discretizing the
domain [EH10]. It can be applied to TINs only.

2. Discrete Morse Theory: This approach discretizes the domain
with a CW complex, analyzes the incidence graph of cells, and
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Figure 3: The step model is a regular grid where each cell (pixel)
is assigned a constant value (left). The bilinear model is defined
on the dual grid, with data assigned to vertices and the function ex-
tended by bilinear interpolation within cells (center). The quincunx
linear model is defined on the triangulation obtained by adding a
vertex inside each cell of the dual grid and splitting the cell into
four triangles; the value assigned to the quincunx vertex depends
on the values at the corners of the cell (right).

assigns discrete gradients to its arcs [For98]. It can be applied to
either TINs or grids.

The piecewise-linear model offers a closer connection to the
smooth setting, leading to more accurate critical point and separa-
trix locations. However, it introduces artifacts like multiple saddles
(not present in the smooth setting) and ambiguities in tracing sep-
aratrices, requiring careful handling in algorithms. Applying this
model to regular grid data involves defining a simplicial complex
with grid vertices, and different choices can yield different results.

Discrete Morse Theory, grounded in a formal framework, has
gained popularity. It provides a cleaner, unambiguous Morse-Smale
complex once a discrete gradient is defined. Since it operates on
CW complexes, it’s directly applicable to regular grids, too. How-
ever, defining a discrete gradient field consistent with the input data
remains challenging. As discussed in [GBP12, RGH∗12], the stan-
dard algorithm [RWS11] may produce a Morse-Smale diagram that
doesn’t converge to the continuous solution with refinement. Re-
cent work [TAW24] highlights the drawbacks of this approach, in-
cluding potential inaccuracies in geometry and topology.

2.2. Models for the grid

We consider three different extensions of grid data to a continuous
domain (see Fig. 3):

1. Step Model: Grid data represent cells of a regular square grid,
and the function value is constant within each cell, similar to pix-
els in a digital image. This model assumes each datum approxi-
mates the underlying function in its neighborhood, resulting in a
discontinuous approximation.

2. Bilinear Model: Grid data correspond to vertices of a regular
square grid, and the function value over each cell is interpo-
lated bilinearly from its four corners. This yields a continuous,
piecewise-smooth function, but it lacks smoothness at the edges
and vertices of the tessellation.

3. Quincunx Linear Model: Starting with the bilinear model’s tes-
sellation, each square cell is subdivided into four triangles by
adding a vertex at its center. The value assigned to this vertex
will be discussed later. This model results in a piecewise-linear
function, as in [EH10].

We demonstrate the equivalence of these models regarding crit-
ical point classification and the absence of multiple saddles. De-
tailed computations for the Morse-Smale complex on these models
will be presented in a separate study.

We identify each point p in the input grid with a pair of integer
coordinates (i, j) and denote its value as g(p) or g(i, j). Two points
are considered 4-adjacent if they differ by one unit in one coor-
dinate while remaining equal in the other. They are 8-adjacent if
they differ by one unit in both coordinates. For now, we assume the
input grid has no flat edges, meaning no pair of 4-adjacent points
shares the same value.

We consider the bilinear model first. It is straightforward to ver-
ify that a bilinear cell cannot contain a minimum or a maximum in
its interior. Furthermore, it contains a simple saddle if and only if
the smallest (respectively, largest) two values of g at its corners lie
at opposite endpoints of diagonals. Moreover, critical points can-
not exist in the interior of the edges, where the function consists of
linear ramps. However, vertices of the grid can be regular points
or critical points of all types. For a vertex p and its four adja-
cent patches, although function g is not smooth at p, its directional
derivative at p is well-defined for any direction v and varies contin-
uously as v rotates about p. The type of point p can be characterized
by counting the changes of sign of the directional derivative during
its rotation about p. Equivalently, we can count the sign changes
between g(p) and the values of g at its 4-adjacent vertices, rotating
about p. This sign can change at most once in each cell incident at
p, leading to a total of zero, two, or four sign changes:

• If there are no sign changes, p is either a minimum or a maxi-
mum, depending on the sign of the directional derivative.
• If there are two sign changes, p is regular.
• If there are four sign changes, p is a simple saddle.

Note that, the 8-adjacent vertices of p are irrelevant as the direc-
tional derivatives of g at p do not depend on them. In summary,
for the bilinear model, critical points are located at vertices and in-
side cells; cells can only contain saddles; and all saddles are simple
(e.g., there are no monkey saddles).

Concerning the step model, we note that it is defined on the dual
lattice of the bilinear model. For clarity, we refer to the elements of
this dual lattice as pixels (containing data values) and corners (ver-
tices); the boundaries between 4-adjacent pixels remain edges. To
characterize critical points in the step model, it suffices to consider
dual rules. A corner x can be either regular or a simple saddle. It is
a saddle if and only if there are four sign changes in the difference
between the values of g at pairs of cells incident at x, taken in cyclic
order about x. A pixel can be either regular or any type of critical
point, depending on the number of sign changes in the difference
between its value and the values of its 4-adjacent pixels, taken in
cyclic order about it.

Finally, we define the quincunx model as follows. For a quincunx
vertex q within a regular cell c in the bilinear model, assign the
value:

g(q) =
1
4

4

∑
i=1

g(ci)

where g(ci) are the values of g at the four corners of c. For a quin-
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cunx vertex q within a saddle cell c in the bilinear model, assign
the value: g(q) = g(cs) where g(cs) is the value of g at the saddle
point of the bilinear patch within c. While this assignment might
introduce slight misalignments of saddles compared to the bilin-
ear model, this approach is crucial for maintaining correspondence
between critical points.

To determine critical points in the quincunx model, we apply
the piecewise-linear model rules [EH10]. All critical points in this
model occur at vertices. The definitions above show that each quin-
cunx vertex q is classified as the cell c containing q in the bilin-
ear model. To show that the type of a grid vertex p remains con-
sistent between the bilinear and quincunx models, we need only
demonstrate that quincunx vertices do not introduce additional sign
changes around p. Let r and s be two consecutive 4-neighbors of
p, and let q be the quincunx vertex inside the cell c with p,r,s on
its boundary. If g(p)− g(r) and g(p)− g(s) have opposite signs,
then the sign of g(p)− g(q) is irrelevant for determining the num-
ber of sign changes rotating about p from r to q to s. Conversely,
let g(p) < g(r), g(p) < g(s), and let t be the fourth corner of cell
c. If q is regular, we must have g(p) < g(t), hence g(p) < g(q)
because g(q) is the average of the four corner values; if q is a sad-
dle, we necessarily have g(p) < g(q). The case g(p) > g(r) and
g(p)> g(s) is symmetric.

Another common approach to construct a piecewise-linear sim-
plicial model from a grid involves splitting each square along a
diagonal. While this method avoids introducing additional vertices,
it is susceptible to bias due to the chosen diagonal direction and
may yield inaccurate results, as noted in [TAW24]. Furthermore, it
can contain multiple saddles. These limitations are why we opted
for the quincunx model instead.

We will describe our algorithms on the step model. However,
they depend only on the 4- and 8-relations of each vertex and work
just as they are on all three models.

3. Classification of flat spots

We now accommodate input grids that may contain flat spots. A flat
spot is identified as a 4-connected set of pixels with identical val-
ues. Consider the chains of edges that separate the pixels of a flat
spot from the other pixels. The flat spot is the region of the domain
enclosed by these chains and encompassing all the flat vertices. Re-
fer to Figure 4 for an illustration. It’s important to note that distinct
flat spots can be adjacent but remain separate entities.

We now determine the minimum number of critical points that a
flat spot must contain, along with their types, to ensure compatibil-
ity with the overall topology of the dataset.

We label each edge on the boundary of a flat spot with a + or
a − sign, depending on whether its incident pixel from the outer
region has a value higher or lower than the value within the flat
spot, respectively. Given a chain γi forming a boundary of the flat
spot, we count the number ki of changes of sign along γi; this value
is necessarily even. Let us define hi = ki/2+1 and

H =
b

∑
i=1

hi,

Figure 4: A flat spot in the step model is a 4-connnected set of
pixels with the same value (blue area), which is bounded by one or
more chains of edges (red lines).

where b is the number of boundaries of the flat spot. We then have
the following rules:

A. If ki = 0 for all i = 1, . . . ,b and all signs at all boundaries are
+, then the flat spot must contain a minimum and b−1 saddles.

B. If ki = 0 for all i = 1, . . . ,b and all signs at all boundaries are−,
then the flat spot must contain a maximum and b−1 saddles.

C. Otherwise, the flat spot must contain H−2 saddles; in particu-
lar, if H = 2 then the flat spot is a regular region.

Note that H ≥ b, thus if H < 2 we are necessarily in one of the first
two cases. Note also that, in the first two cases, if the flat spot has
just one boundary then it contains only a minimum or a maximum.

To prove the rules enumerated above, it is convenient to extend
the domain to a topological sphere by adding a dummy region, 4-
connected to all pixels on the boundary of the initial domain. The
value assigned to the dummy region, whether the largest or smallest
compared to other pixels, is irrelevant to our subsequent analysis.
Let M, m, and s represent the total number of maxima, minima,
and saddles, respectively, in this extended dataset. While we omit
a complete proof for brevity, a sketch of the proof stems from the
following observations:

1. The Poincaré-Hopf theorem implies that M + m− s = 2, and
there must be at least one minimum and one maximum.

2. Integral lines that leave the flat spot towards an external region
must necessarily terminate at a critical point within that external
region. This is because an integral line that descends (or ascends)
upon leaving the flat spot cannot re-enter it.

3. Due to Observation 2, if an external region is bounded by chain
γi, it follows that the minimal set of critical points in that re-
gion is composed by either one maximum and hi− 1 minima,
or one minimum and hi− 1 maxima, without any saddles. This
can be demonstrated by considering the bundles of integral lines
that extend into the region from the segments of γi between sign
changes. Given that each integral line must reach a maximum
or minimum and the lines cannot intersect, a total of hi critical
points that aren’t saddles are necessary and sufficient to accom-
modate all the bundles of integral lines.

4. The rules above follow from the need of satisfying Observation
1 after determining the minimum set of critical points in all ex-
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Figure 5: Moves to perturb pixels with related priorities. Green pixels indicate unprocessed areas within the flat spot; the central pixel is
currently processed. Signs +, −, and 0 denote values higher, lower, or equal to the central pixel, respectively. Arrows represent the direction
of perturbation (raise/lower). Question marks highlight 8-neighbors that must be analyzed to set the proper direction of perturbation to
minimize the number of generated saddles. Bold edges outline the boundary loops of the unprocessed area, with different colors for distinct
boundaries. Priorities are as follows (lowest label first): 1) Three non-flat neighbors with the same sign: Avoid creating a maximum or
minimum. 2) Three non-flat neighbors with alternating signs: prefer move that creates fewer saddles (possibly zero). 3) Two consecutive
non-flat neighbors with the same sign and a third with the opposite sign: prefer move that creates fewer saddles. 4) Two consecutive non-flat
neighbors with the same sign and the 8-neighbor between the flat neighbors is also flat: avoid creating a maximum or minimum. 5) Two
consecutive non-flat neighbors with alternating signs and the 8-neighbor between the flat neighbors is also flat: prefer move that creates
fewer saddles. 6) Same as 4, but with a non-flat 8-neighbor between the flat 4-neighbors; the orange and blue loops must be distinct before
the operation and merged after it. 7) Same as 5, but with a non-flat 8-neighbor between the flat 4-neighbors; the orange and blue loops must
be distinct before the operation and merged after it.

ternal regions with Observation 3. In particular, Rules 1 and 2
descend from the need of having at least one maximum and one
minimum, which must belong to the flat spot if no outer region
contains it; while Rule 3 follows from satisfying Poincaré-Hopf
with a number of saddles that compensates for the number of
maxima and minima belonging to the external regions.

Our algorithm for classifying flat spots is very simple. We be-
gin by identifying all groups of 4-connected pixels that define flat
spots through a grid traversal. For each group, we extract the edges
along its boundaries by examining the 4-adjacencies of its vertices.
Next, we process this set of edges by starting with one of them
and following the chain it belongs to. Each edge leads to a corner,
and there is exactly one other edge in the chain exiting that cor-
ner. We continue this traversal until returning to the initial edge. As
we traverse a chain, we collect labels and count sign changes. This
process is repeated until all edges have been processed, ensuring
that all boundaries are traversed. Finally, we apply the previously
described rules to classify the flat spot.

4. Disambiguation of flat spots

To disambiguate flat spots, we assign symbolic displacements to
the pixels of each flat spot. Consider the dual edges of the lattice,
which connect the centers of pixels. We assign an orientation to
each dual edge, from its lower to its higher endpoint. While dual
edges that connect pixels with different values have predefined ori-
entations, the orientations of edges connecting pixels within a flat
spot depend on how such pixels are perturbed. Increasing [decreas-
ing] the value at a pixel of the flat spot makes it higher [lower] than
its unperturbed flat neighbors.

Any set of displacements that maintain relationships with pixels
outside the flat spot is valid for disambiguation. However, arbitrary
perturbations can introduce an excessive number of critical points
within the flat spot. We minimize the number of introduced critical
points, matching the classification from the previous section.

Our algorithm processes flat spots sequentially, preserving their
relationships with surrounding data. For a given flat spot, we pro-
cess its pixels one by one, starting at the boundary and moving
inward until all pixels are processed. The algorithm’s rationale is
to consume unprocessed pixels while minimizing the introduction
of critical points. To this aim, we employ a queue containing can-
didate pixels on the boundary of the unprocessed set. We extract
pixels from the queue and apply symbolic perturbations, thus ori-
entating the dual edges that connect them to other unprocessed pix-
els within the flat spot. The unprocessed set shrinks by one pixel at
each move until just one unperturbed pixel is left.

A single perturbation consists of (symbolically) increasing or
decreasing the elevation of a pixel with respect to its neighbors
in the unprocessed set while maintaining the same relations with
its neighbors in the processed/outer set. An arbitrary perturba-
tion might generate critical points at the processed pixel, its 4-
neighbors, or its corners. We allow only a given set of legal moves,
guaranteeing that the number of critical points in the unprocessed
set decreases according to any critical point newly generated by a
perturbation move. The analysis to select legal moves stems from
rules A, B, and C given in Sec. 3 and is omitted here for brevity.
In particular, for cases A and B, the maximum/minimum is always
generated by the last move while intermediate moves may possibly
generate only saddles. The legal moves are illustrated in Fig. 5 and
explained in the following:

• Moves 1, 2, 3 erode thin protrusions of the flat spot, where thin
refers to pixels of the flat spot that have only one neighbor in the
unprocessed region. The direction of Move 1 is obliged to avoid
creating a maximum or minimum. The perturbation applied in
Moves 2 and 3 is selected by analyzing the content of the 8-
adjacent pixels marked with a ?, in such a way that a minimum
number of saddles (possibly zero) is generated.
• Moves 4 and 5 erode solid parts of the flat spot, where solid

refers to those parts that contain at least a block of 2× 2 pixels.
These moves refer to pixels that have two 4-neighbors, plus an
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8-neighbor forming a 2×2 block with them, all belonging to the
unprocessed region. Move 4 is obliged, similarly to Move 1. The
perturbation for Move 5 is decided similarly to Moves 2 and 3.
• Move 6 and 7 break thin chains of pixels, thus merging two dis-

tinct boundaries (marked by the orange and blue lines) into one
boundary. Again, Move 6 is obliged, while Move 7 is decided by
analyzing the content of the 8-neighbors marked with a ?. Note
that, if the orange and blue lines belong to the same boundary,
we consider the move not legal, thus avoiding disconnecting the
unprocessed subset.

The topological validity of the result is warranted no matter the
order in which the pixels are processed. In the simplest case, moves
could be applied in any order and a simple FIFO queue could
be used. However, the order of moves influences the location of
the critical points: we obtained the best results by prioritizing the
moves according to the labels in Fig. 5 (lowest label first).

The pseudo-code is illustrated in Algorithm 1. The algorithm
takes in input a grid of states S and a set of flat spots F . Grid S
contains, for each pixel p in the input grid, its state with respect to
its 4-connected neighbors: for each neighbor, the state can be +,

Algorithm 1: Disambiguation of flat spots
Input: Grid of states S, Set of flat spots F
Output: Disambiguated grid S

1 Q←∅
2 forall f ∈ F do
3 forall p ∈ f do
4 P← GetPriority(p,S)
5 if P > 0 then
6 Q.push(p,P,S[p])

7 while Q 6= ∅ do
8 p← Q.pop()
9 if Invalid(p,S) then

10 continue
11 if p.Priority()≥ 4 then
12 P← GetPriority(p,S)
13 if P = 0 then
14 continue
15 if P > p.Priority() then
16 Q.push(p,P,S[p])
17 continue

18 s← GetPerturbation(p,S)
19 UpdateState(p,S,s)
20 forall q 4-adjacent to p do
21 if q is not flat then
22 continue
23 UpdateNeighborState(q,p,S)
24 P← GetPriority(q,S)
25 if P 6= 0 then
26 Q.push(q,P,S[q])

27 return S

− or 0, depending on the neighbor having a value higher, lower or
same as p. Set F contains the flat spots in the input dataset, where
each flat spot f consists of a collection of pixels. The algorithm
disambiguates all zeros in S changing each of them into a + or a −
and returns the updated grid.

For each flat spot f , a priority queue Q is initialized with all pix-
els of f that belong to one of the configurations depicted in Fig. 5.
Each pixel p is pushed into Q together with its priority P and its
current state S[p] (lines 3-6). If two pixels have the same prior-
ity, the order of push rules (FIFO). Then, elements of the queue
are processed until the queue becomes empty (lines 7-26). After
each pixel p is popped from the queue (line 8), function Invalid
tests its state in the queue against its current state in S; if the state
has changed, the pixel is discarded (lines 9-10). Moreover, if the
pixel has two non-flat neighbors in its state, we must check if the
8-connected pixel between those neighbors has changed. If it’s non-
flat and on the same boundary, we discard this element and proceed
to the next one (lines 13-14). If it was flat and it has become non flat,
we we simply push p into Q again with an updated priority (lines
15-17). Otherwise, function GetPerturbation returns the new
state to be assigned to p. Function UpdateState accordingly
updates p in S (lines 18-19). Finally, function UpdateNeigh-
borState updates the state of the pixels that are 4-adjacent to
p in S, and each such neighbor that has a non-null priority after
having changed state is pushed into Q (lines 23-26).

5. Experimental results

We experimented our algorithms on two synthetic datasets that
sample mathematical surfaces and on three real-world DEMs.
The five datasets are: CosCos, a surface sampled from a sinu-
soidal function, dampened with a Gaussian centered at the origin;
GaussHills, a surface sampled from the sum of different Gaussian
functions; Aletsch Glacier, a section of the swisstopo DEM with a
25m horizontal resolution [swi15], centered around Konkordiaplatz
in the Aletsch glacier; Graian Alps, a section of the SRTM global 3
arc-seconds (90m) dataset [NAS00], in the version fixed by [dF23],
roughly centered on the Mont Blanc Massif; Finland, another sec-
tion of the previous dataset, representing the region around lakes
Pyhäjärvi and Kolima north of Central Finland in Scandinavia. For
each dataset, we produced several versions quantized at decreasing
vertical resolutions. The synthetic datasets were originally encoded
in double precision; the vertical resolution of natural DEMs is 1
meter. All datasets were quantized up to 100m, except from Fin-
land: given its lower dynamic range, we chose to quantize up to
16m. For all datasets, in the coarsest version flat areas cover most
of the surface (∼ 99%). Table 1 shows statistics about the various
datasets and corresponding results. The total count of critical points
after classifying the flat spots always satisfies the Poincaré-Hopf
formula.

In the synthetic datasets, the distribution of critical points re-
mains substantially stable throughout the various level of quanti-
zation, because most of their morphological features are at a scale
larger than the data resolution. On the contrary, on real world, noisy
datasets that contain many features at a tiny scale, the quantization
acts as a filter and the number of critical points tends do decrease
drastically at the coarsest vertical resolutions.
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Dataset Extremalities Flat spots Elapsed time (sec)

Grid size Vertical Type Number Area Type Classify Disambiguate
Dynamic range resolution Min Max Sad (%) Reg 1 Min 1 Max 1 Sad 2 Sad >2 Sad Mixed

CosCos
256×256

[-2450,2990]



double 20 25 44 - - - - - - - - - - -
1 20 25 44 2435 9.28 2399 10 13 13 0 0 0 0.004 0.002
2 18 25 42 4102 17.10 4048 8 23 23 0 0 0 0.006 0.004
5 16 25 40 6312 31.70 6250 13 23 26 0 0 0 0.010 0.007
10 12 25 36 7947 47.98 7879 8 25 35 0 0 0 0.016 0.011
20 14 25 38 8583 66.94 8509 14 25 35 0 0 0 0.022 0.016
50 12 25 36 6500 89.74 6441 10 25 16 4 4 0 0.027 0.021

100 14 24 37 2826 98.58 2779 14 24 6 0 3 0 0.026 0.026

GaussHills
400×400

[-1907,4078]



double 2 5 6 - - - - - - - - - - -
1 2 5 6 5614 15.43 5602 2 4 6 0 0 0 0.012 0.008
2 2 5 6 7305 23.52 7293 1 5 6 0 0 0 0.017 0.012
5 2 5 6 10969 38.93 10957 2 4 6 0 0 0 0.027 0.021
10 2 5 6 15175 56.26 15162 2 5 6 0 0 0 0.039 0.029
20 2 4 5 19518 80.08 19507 2 4 5 0 0 0 0.053 0.041
50 2 4 5 3801 99.11 3790 2 4 5 0 0 0 0.060 0.054

100 2 4 5 96 100.00 85 2 4 5 0 0 0 0.045 0.058

Aletsch Glacier
703×697
[813,4268]



1 755 1850 2604 34557 18.12 34243 54 88 170 2 0 0 0.044 0.030
2 519 1602 2120 46193 30.59 45810 53 122 206 2 0 0 0.076 0.052
5 244 1150 1393 59604 52.18 59193 35 147 225 1 3 0 0.121 0.088
10 129 882 1010 65354 73.85 64906 15 201 227 4 1 0 0.163 0.122
20 104 595 698 38816 91.82 38344 25 222 213 10 2 0 0.189 0.151
50 22 263 284 4159 99.70 3897 5 141 96 17 3 0 0.157 0.160

100 20 188 207 406 99.97 238 6 109 30 12 11 0 0.117 0.193

Graian Alps
1200×900
[450,4786]



1 3810 7280 11089 24363 6.10 23350 359 228 424 0 2 0 0.031 0.024
2 3402 6935 10336 42302 10.27 40688 457 417 737 3 0 0 0.053 0.039
5 2483 6179 8661 86382 21.29 83959 471 773 1168 8 3 0 0.110 0.078
10 1716 5244 6959 136079 36.78 132940 460 1108 1562 9 0 0 0.194 0.137
20 952 3983 4934 180642 60.83 177322 295 1344 1666 13 2 0 0.324 0.229
50 380 2386 2765 109872 93.27 107177 129 1214 1273 68 11 0 0.494 0.376

100 215 1507 1721 13195 99.62 11440 72 962 520 127 74 0 0.438 0.412

Finland
2401×1201

[68,232]


1 2547 5084 7630 210232 88.51 201249 1445 3448 3481 376 240 7 1.045 1.014
2 1218 3712 4929 100946 95.97 94691 753 2800 2201 305 198 2 0.965 1.121
4 897 3131 4027 38366 98.96 33219 559 2655 1378 293 265 3 0.775 1.153
8 449 2566 3014 10254 99.86 6819 290 2292 425 165 266 3 0.647 1.295
16 338 1711 2048 2532 99.99 539 219 1555 90 31 105 7 0.538 1.958

Table 1: Statistics on the datasets and results. We report the name, the grid size, and the original range of elevations. For each dataset,
we built several versions quantized at lower vertical resolutions. We report the total number of critical points, including: those located on
non-flat vertices; and those within flat spots, computed using the method described in Sec. 3. The next columns show the number of flat spots
in each dataset, their total coverage percentage, and the classification of flat spots. Each flat spot can contain: a single minimum; a single
maximum; a number of saddles; or a mix – one minimum or maximum, plus a number of saddles. The last two columns show execution
times for our algorithms, classification (Sec. 3) and disambiguation (Sec. 4), running on a Apple M3 Pro with 18GB of RAM. The current
implementation is a single-core prototype, without any parallelism or optimization.

After running the disambiguation algorithm described in Sec. 4,
we verified that there is no change in topology. As expected, the
number of critical points introduced by the algorithm corresponds
to the number computed by the classification algorithm for all flat
spots in all datasets. This equivalence holds both globally, on the
whole dataset, and locally for each flat area. The only difference is
that the critical points are now located inside the former flat areas.

A visual inspection confirms that all maxima/minima and most
saddle points inside the flat areas are located in positions that are
intuitively correct, near their position in the original dataset. This is
easier to spot in the synthetic datasets, as seen in Fig. 1 and Fig. 6.
Some artifacts arise close to the boundary, where some saddles
are slightly displaced, even though their position is still compati-
ble with the overall terrain morphology. Figures 7 (full dataset), 8
and 9 (zoom-in) show a comparison between features in the original
terrain vs critical points computed on the highest quantization level
for natural datasets. The position of computed critical points, lo-
cated inside flat spots that cover wide areas, is compatible with the

overall morphology of the terrain and shows good performance in
recovering the underlying information that was lost by decreasing
the vertical resolution. This holds true on different types of terrain:
the Aletsch Glacier and Graian Alps represent steep alpine areas,
full of dramatic drops and rises; the Finland dataset is even more
demanding, as it depicts low, gently rolling lands with intricate and
complex features of low dynamic range and wide spatial distribu-
tion, carved a long time ago by the Scandinavian Ice Sheet.

6. Concluding remarks

We have examined three distinct models for digital surfaces derived
from grid data: the step model, the bilinear model, and the quincunx
linear model. We have established the equivalence of these models
in terms of critical point classification and the interpretation of grid
data as Morse functions. Subsequently, we have addressed the clas-
sification of flat spots, a common occurrence in real-world data,
based on the morphology of the surface they represent. Our algo-
rithm determines the necessary number and type of critical points
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Figure 6: CosCos dataset. Left: the original dataset and its features, with no flat areas. Right: the dataset at the highest quantization level
(100), with recovered critical points. At this level, 100% of the DEM is covered by flat spots.

Figure 7: Aletsch Glacier dataset. Left: the original dataset and its features, with flat areas covering only 18.10%) of the surface. Right: the
dataset at the highest quantization level (100), with recovered critical points. At this level, 99.97% of the DEM is covered by flat spots.
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Figure 8: Graian Alps dataset. Left: the original dataset and its features, with flat areas covering only 6.10%) of the surface. Right: the
dataset at the highest quantization level (100), with recovered critical points. At this level, 99.62% of the DEM is covered by flat spots.

Figure 9: Finland dataset. Left: the original dataset and its features, with flat areas covering already 88.51%) of the surface. Right: the
dataset at the highest quantization level (100), with recovered critical points. At this level, 99.99% of the DEM is covered by flat spots.
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within a flat spot to maintain the global topology of the underlying
function. Finally, we have introduced an algorithm to disambiguate
flat spots through a virtual displacement of their points, establish-
ing a strict ordinal relationship among adjacent point elevations.
Our algorithm effectively identifies the correct number and type of
critical points within each flat spot. We have rigorously tested our
algorithms on both synthetic and real datasets at varying levels of
quantization, consistently achieving reliable results.

Algorithm 1 will generate different solutions depending on dif-
ferent orderings of valid displacements. We plan to extend our work
by investigating whether more complex priorities could give better
results, and to perform a quantitative comparison on the quality of
recovered critical points. The next logical step will be to compute
a new DEM surface by assigning perturbed elevations to the flat
points, consistent with their symbolic perturbation. This will pro-
vide a super-resolution version of the original DEM that changes
only its precision, without affecting its horizontal resolution.

By eliminating flat spots, any grid dataset can be transformed
into a discrete Morse function. We propose that the three models
we considered, which extend this function to a continuous domain,
can be effectively employed to construct a Morse-Smale complex
on real data. This approach may potentially mitigate several arti-
facts encountered with both Piecewise-Linear and discrete Morse
models. We will extend our research in this direction in the near
future and apply our analysis to real-world application problems.
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