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Figure 1: We can compute the cut locus of the geodesic distance function on any shape. From the simplest ones (left) to the most complex,
both geometrically (middle) and topologically (right). Our output can be as smooth as the real cut locus (left, middle), or encoded in the
edges of the underlying mesh (right). Both results are practically relevant for applications.

Abstract
We present a novel method to compute the cut locus of a distance function encoded on a polygonal mesh. Our method exploits
theoretical findings about the cut locus and – with a combination of analytic, geometric and topological tools – it is able to
compute a topologically correct and geometrically accurate approximation of it. Our result can be either restricted to the mesh
edges, or aligned with the real cut locus. Both outputs may be useful for practical applications. We also provide a convenient
tool to optionally prune the weak branches of the cut locus, simplifying its structure. Our approach supersedes prior art, in that
it is easier to use and also orders of magnitude faster. In fact, it depends on just one parameter, and it flawlessly operates on
meshes with high genus and very high element count at interactive rates. We experiment with different datasets and methods for
geodesic distance estimation. We also present applications to local and global surface parameterization.

CCS Concepts
• Computing methodologies → Shape analysis; Mesh models; • Mathematics of computing → Continuous functions;

1. Introduction

Computational problems in the geodesic metric of Riemannian
manifolds are becoming more and more relevant in geometry pro-
cessing [AOCBC15, KCPS15, MRCK21, Sch13, SSC19b], optimal
transport [BvdPPH11, LD11, SRGB14, SDGP∗15, Sol18], and ma-
chine learning [BYF∗19, MKK21, MBBV15, RGA∗20, SRC∗20].
Many results, however, make assumptions about well definiteness
of differential quantities of the distance function, uniqueness of
shortest paths, injectivity of the exponential map, etc. But such
properties are violated at the cut loci of points.

Roughly speaking, the cut locus of a point x consists of all points
that can be connected to x with more than one shortest path, and
it may have a non-trivial structure even for the simplest shapes

[GMST05]. Moreover, the minimum distance of the cut locus from
the source x can be arbitrarily small [Sak97]. Therefore, methods
that make assumptions about staying away from the cut locus, with-
out properly knowing it, might be hindered not just on a global
basis, but on a local basis too. For example, the cut locus sets a
tight bound to the injectivity of the exponential map in local surface
parametrization [HA19] and it influences the smoothness of the so-
lution to the Monge problem in optimal transport [Vil08, Vil11].

Curiously enough, there exist very few algorithms for computing
the cut locus. Besides, existing algorithms are slow, or dependent
on several parameters, or limited to specific classes of surfaces, or
suffer from all such limitations together (see Sec. 2).

In this paper, we focus on real analytic surfaces represented with
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polygonal meshes, and propose a practical and efficient algorithm
for finding the cut locus in this setting. Our algorithm is indepen-
dent of the method used to estimate the distance function, which is
taken in input at the vertices of the mesh. We follow a mixed analyt-
ical, geometric, and topological approach. Starting from the point
farthest from the source (which surely belongs to the cut locus), we
exploit facts about the Laplacian of the distance function to grow
a spanning tree that floods the entire mesh, and locally aligns with
the cut locus. The method relies on a unique parameter that the user
can tune interactively to obtain an approximation of the cut locus by
pruning the spanning tree. For surfaces of genus higher than zero,
we restore the correct topology by closing the necessary loops. As a
result, we obtain a cut locus that is geometrically approximated, be-
ing made of edges of the mesh; and topologically accurate, having
the same homology of the underlying manifold. For geometrically
more accurate results, we also provide an algorithm to smooth the
curves that compose the cut locus.

Our method has three key practical advantages with respect to
prior art: (i) the user can intuitively tweak a single parameter in
real time with immediate feedback; (ii) it is orders of magnitude
faster, thus permitting to operate on discrete manifolds with much
higher complexity, both geometric and topological; (iii) it is inde-
pendent of the algorithm used to compute the distance function,
thus allowing the user to trade-off between accuracy and speed.

We evaluate our method on several shapes as well as differ-
ent algorithms for computing the distance function. We demon-
strate its applications to the computation of the radius of injectiv-
ity of the exponential map, and to visibility-aware mesh cutting
for texture mapping. Besides, we believe this is the first practi-
cal tool that allows to compute the cut locus on general meshes.
Considering the amount of precious information that the cut lo-
cus encodes in a concise yet low dimensional structure, we ex-
pect scholars from the geometry processing community to read-
ily adopt our tool, with new applications arising to complement
the proposed ones. The code is released in the public domain at
https://github.com/Claudiomancinelli90/CutLocus.

2. Related Works

Theory. Since Poincaré introduced the concept of cut locus
[Poi05], this subject was studied by different researchers under dif-
ferent perspectives and in different times. Results are sparse, quite
complex, and often subject to strong assumptions on the manifold.

Concerning topological properties, Myers proved that the cut lo-
cus of a closed real-analytic surface is a graph with a finite number
of branches [Mye35]. Buchner generalized this result to higher di-
mensions, and proved that in dimension two the local structure is
that of a tree [Buc77]. Sakai stated a strong equivalence between
the homology of the manifold and that of the cut locus [Sak97]. We
leverage such results to ensure that the estimated cut locus has the
correct local structure and global topology.

Concerning differential properties, it is well known that the dis-
tance function is smooth everywhere but at the source x and at
the cut locus [Sak97]. Second order differential properties at the
cut locus have been investigated only more recently in a weak

sense, like in the sense of distributions, or of viscosity, or of barri-
ers [GOV20,MMU14,Nee07]. Roughly speaking, all such methods
study the behavior at the cut locus by approximating the distance
function arbitrarily well with a smooth function. Mantegazza and
colleagues show the equivalence of analyses in the sense of distri-
butions and of viscosity, and that the analysis in the sense of barriers
implies the other two [MMU14] . In this context, Générau shows
that indeed the Laplacian of the distance function is −∞ in the
sense of barriers at the cut locus [Gén20]. We apply the latter result
to locally align to the cut locus.

To the best of our knowledge, the only analytical solutions for
the cut locus – except the trivial case of the sphere – were given
in [IK04] for the case of a tri-axial ellipsoid, and in [GMST05] for
the case of a torus of revolution.

Algorithms. The first two tools for computing the cut locus that
were proposed in the literature are Loki [ST02] and Thaw [IS04].
They both have limited capabilities, and were mainly developed
with the purpose of supporting theoretical investigations. Loki is
based on a polynomial approximation of the exponential map de-
fined from a periodic parametrization of the surface, and supports
only surfaces with genus one. Thaw supports only convex surfaces.

Misztal and colleagues [MBAM11] compute a retraction of the
surface to the cut locus by means of an advecting front, represented
as a piecewise linear curve. The cut locus is detected from self-
intersections of the propagated front. Geodesics are computed by
relying on a local parametrization, and using finite differences. Re-
sults are presented just on parametrized tori, and reported running
times are about half an hour. While in principle this method scales
to arbitrary surfaces, such an extension would require developing
more general ways to compute geodesics, and to propagate the ad-
vecting front. Specifically, many geodesics are radially cast during
front propagation, hence it may become very expensive to maintain
the front accurate, especially far from the source, where it stretches.

Dey and Li [DL09] compute a subset of the cut locus, defined as
the set of points where two minimizing geodesics meet after spread-
ing apart by a certain amount. Geodesics are discretized with short-
est paths on a graph, and are traced from all pairs of sampled points
that lie closer than a given threshold. If two geodesics starting at
nearby points diverge, then such points are added to the cut locus.
The method depends on several parameters, but it is proven to con-
verge to the cut locus by increasing the density of sampling and
reducing the thresholds for distances between adjacent points and
spread between geodesics. The output is just a discrete collection
of points, which may be connected to form a complex. The authors
report about ten minutes to compute the cut locus on a mesh of
about 280K triangles.

Générau and colleagues [Gén20, GOV20] provide a comprehen-
sive account of the subject, and propose a method to compute an
approximation of the cut locus on a rigorous mathematical basis.
They define the λ-cut locus as a regularized subset of the cut locus.
They prove that such set can be approximated arbitrarily well with
the solution of a variational problem, depending in turn on another
parameter m. The solution converges to the exact cut locus when m
goes to infinity and λ goes to zero. The approximation is obtained
by resolving the variational problem with finite element methods.
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Figure 2: The distance function emanating from the red source is
smooth everywhere except at the cut locus, where its gradient is
discontinuous (closeup).

The method can work on general surfaces, but results are presented
just on simple shapes (multi-tori of genus 1, 2, 3); reported times
are of about an hour to process a mesh with 100K triangles.

None of these previous techniques is capable of combining the
performances of our method with its ability to compute the cut lo-
cus on discrete manifolds with any geometric or topological com-
plexity. In Sec. 7, we validate our geometric accuracy by com-
paring against the ground truth on the torus [GMST05], as well
as against numerical methods that converge to the exact solu-
tion [DL09, Gén20].

3. Preliminaries

We give the formal definition of cut locus and we report some rel-
evant facts about it. The reader not familiar with basic concepts of
Riemannian geometry can refer to [GHL04, Sak97].

LetM be a compact real-analytic Riemannian 2-manifold (i.e.,
a closed surface) endowed with a smooth metric. The metric allows
us to define the length of any smooth curve γ onM. For any pair
of points x,y ∈M, their geodesic distance d(x,y) is defined as the
length of the shortest curve γ onM joining x and y. Whenever x is
fixed, we define its distance function

dx :M→ R dx(y) := d(x,y).

The cut locus C(x) of x can be defined geometrically or analytically
in two equivalent ways as (the closure of) the locus of points where:
a shortest curve to x fails to be unique; the distance function dx fails
to be differentiable. A point of the cut locus will be called a cut
point. The following properties are relevant to our work:

(P1) Let ∆dx be the Riemannian Laplacian of the distance function,
then ∆dx is−∞ in the sense of barriers at the cut locus [Gén20];

(P2) The cut locus is a finite graph, having the local structure of a
tree [Buc77];

(P3) The cut locus has the same homology as M: it is a tree for
genus zero surfaces, and it contains 2g cycles otherwise, with g
being the genus ofM [Sak97];

(P4) The cut locus is piece-wise smooth. Specifically, it is C∞ at
all regular points [MM02].

Figure 3: Left: cut locus of a three torus with respect to a dis-
tance function sourced at its topmost vertex. Right: the valleys of
the Laplacian of the distance function clearly demarcate the paths
of the cut locus. We catch these paths with a spanning tree that
grows by locally prioritizing lower Laplacian values (closeup).

4. Method

Our method alternates discrete differential geometry and topology
computations. We take in input an approximation of a smooth sur-
faceM represented with a polygonal mesh M = (V,F), where V
and F are the vertices and faces, respectively. Without lack of gen-
erality, we assume all faces of F to be triangles. In the following,
x ∈ M is the source for which we evaluate the cut locus, and dx is
the distance function from it. We assume that a method is given to
compute the distance function from any given point on M to all the
vertices of V , as this computation is orthogonal to our contribution.
In Section 7 we experiment with different methods.

Our method consists of two steps, plus one optional smooth-
ing step. The steps jointly address the properties (P1-P4) listed in
Sec. 3. We first compute the cut locus in the form of a tree, exploit-
ing its relation with the Laplacian of the distance function (Property
P1) and its local structure (Property P2). This step is already suf-
ficient to provide a valid solution for objects of genus zero. In the
second step, we ensure the correct homology for objects of higher
genus (Property P3). In the third (optional) step, we smooth the cut
locus, following the gradient of the distance function (Property P4).
In the following subsections we provide the technical details.

4.1. Cut locus from spanning tree

We know that the distance function dx is not differentiable at the
cut locus. In fact, the gradient∇dx points towards the cut locus and
breaks at it, as illustrated in Fig. 2. The distance function dx can be
approximated arbitrarily well with a smooth function d̃x (barrier),
whose Laplacian diverges to−∞ at the cut locus as the approxima-
tion improves (Property P1). Therefore, if we estimate the discrete
Laplacian of the distance function sampled at the vertices of M, we
expect it to become highly negative close to the cut locus. We base
our construction on the above observation, designing a spanning
tree that floods the entire mesh while aligning to the valleys of the
discrete Laplacian, and then pruning its branches in order to retain
only the portions of it that are at the cut locus (Fig. 3).

Laplacian and gradient estimators. We adopt a quadratic estima-
tor for all first and second order differential quantities of function
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dx in the Riemannian metric [WYLC13]. This approach is known
to converge to the true values of the sampled function as the av-
erage length of edges tends to zero. The Laplacian ∆dx is a fun-
damental component of the method, whereas the gradient ∇dx is
used for filtering, and can also be substituted with an alternative fil-
ter based on the Laplacian itself. This method is stable and reliable
even on moderately irregular meshes. If the meshing is regular, then
a classical cotan Laplacian [PP93] could be a simpler yet valid al-
ternative. Conversely, linear estimators of the gradient result fragile
close to singularities, hence at the cut locus [MLP19].

We briefly review the method, referring to [WYLC13] for further
details, and we discuss our implementation. The metric tensor of
the underlying surface at any given point y is estimated first, by
considering a set of points (y0, . . . ,yk−1) in its neighborhood, and
fitting a quadric Q to describe the portion of surface around y. The
partial derivatives of Q in a local reference system centered at y
are used to approximate the metric tensor g and its inverse g−1.
Next, five vectors a0, ....,a4 are computed, which also depend on
Q, and estimate the partial (Euclidean) derivatives at y of any real-
valued function f sampled at (y,y0, . . . ,yk−1), with respect a local
reference system (u,v) at y, as:

∂ f
∂u
≈ a0fy,

∂ f
∂v
≈ a1fy,

∂
2 f

∂u2 ≈ a2fy,
∂

2 f
∂v∂u

≈ a3fy,
∂

2 f
∂v2 ≈ a4fy

where fy = ( fy,y0, . . . ,yk−1) is the sampled function. All the above
quantities depend only on M and are computed once for all its ver-
tices during preprocessing. The metric tensor, its inverse, and the
vectors ai are encoded for all vertices in sparse matrices. Given
any function f sampled at the vertices of M, its Riemannian dif-
ferential quantities of the first and second order are computed at
all vertices of M with simple matrix-vector multiplications. We ex-
ploit this construction to evaluate the Riemannian gradient and the
Laplace-Beltrami operator of dx.

In order to ensure a reliable estimate, we have noticed that par-
ticular care must be taken in choosing the neighbors of each vertex
y. To obtain a fairly uniform sampling, we consider an extended
neighborhood, computed as depicted in Fig. 4. Note that neighbors,
other than vertices in the 1-ring, are expressed with barycentric co-
ordinates with respect to the triangles containing them. In terms of
building the quadric Q and the ai vectors, this means that we will
use the vertices of triangles in the extended 1-ring of Fig. 4 with
different weights.

ORG Spanning Tree. Knowing that the cut locus has the local
structure of a tree (Property P2), to retain its branches we rely on
the construction of an Ordered Region Growing (ORG) spanning
tree T . For this, we were inspired by techniques that extract line
structures from higher dimensional data, such as blood vessels from
medical images [YCS00], and curve-skeletons [LGS12].

We set the root of T at the mesh vertex y∗ that maximizes func-
tion dx. Being the global maximum, this point is guaranteed to be
in the cut locus. We then initialize a priority queue Q with y∗, and
we grow T by iteratively extracting the top element from Q, creat-
ing new arcs with all its neighbors that have not been included in T

y

y1

y0

y2

y3

y4

y0,1

y1,2

y2,3

y3,4

y4,0

Figure 4: To compute the Laplacian at a vertex y with valence k,
we consider an extended 1-ring consisting of 2k points. We enrich
the set of vertices in the 1-ring of y, with additional k points com-
puted as follows: for each triangle y,yi,yi1+1, we trace a geodesic
line with length `y along the bisector at y, where `y is the 1-ring
average edge length. This locates an additional point yi,i+1 inside
the triangle opposite to y along edge yiyi+1. In case the line extends
beyond the boundary of such triangle, we just clamp it at its border.

yet, and inserting such points into Q. The process stops when the
whole mesh is flooded, hence the queue Q becomes empty. We set
the priority of each point y at −∆dx(y). This ensures that the tree
expands following the deepest valleys of the Laplacian, thus align-
ing to the branches of the cut locus (Property P1). See the closeup
to the right side of Fig. 3.

Thinning. By construction, tree T spans the whole surface. Since
we are operating in a discrete setting, if parallel branches of T are
connected by transversal edges of mesh M, we consider them to
span the portion of surface between them. On the other hand, we
know that the cut locus has Hausdoff dimension one (Property P2).
Therefore, we should not allow nodes of T to contain in their 1-ring
in M any node of T , other than their parent and siblings in T . We
prune T by removing the weaker nodes (in terms of their Laplacian)
that do not fulfill this property. In order to preserve the integrity of
the tree, we apply a thinning filter, akin [RKS00], again prioritized
on the value of the Laplacian. We insert all the leaves y of T in a
priority queue Q, this time by using ∆dx(y) as priority. When an
element y is extracted from Q, we check whether any of its neigh-
bors, different from its parent and siblings in T , also belong to T .
If there exits one such neighbor y′ such that ∆dx(y′)< ∆dx(y), then
we remove y from T , and we add its parent to Q if it has become
a leaf node. Although this filter does not guarantee to fulfill the
constraint above everywhere, it maintains the integrity of the tree,
avoiding to discard whole branches which might contain strongly
negative values of the Laplacian, just because some of their inter-
mediate nodes are weak. In practice, we found it to produce better
results than other thinning strategies that we have tried.

Filtering. Having flooded the entire mesh, even after thinning, the
tree T contains many spurious branches, which do not belong to the
cut locus. Spurious branches are not easy to remove automatically,
because the paths of the cut locus may be very unstable. Consider
for instance the example in Fig. 5. It is well known that the cut
locus of a point x on a sphere consists just of its antipodal point x̄.
However, if the sphere is perturbed with a bump, the cut locus of x
is extended to a geodesic curve that connects the top of the bump to
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Figure 5: On a sphere with a bump, the cut locus of a point x (blue)
is a geodesic line from the top of the bump to the antipodal point
x̄ (yellow). Despite weak in terms of discontinuity of gradients, our
Laplacian-based detection system clearly defines a valley along the
whole cut locus (closeups). Branches that accumulate around the
antipodal point x̄ may be filtered out.

x̄. Note that the bump can be arbitrarily small and arbitrarily close
to x, hence the cut locus on the bumpy sphere can be as extended
as a maximal semi-circumference.

Since we are working on a discrete approximation M of the man-
ifoldM, we may easily miss existing bumps or, conversely, create
artificial bumps. Branches caused by small bumps will be weak in
terms of Laplacian, since geodesic lines from x reach them at a very
narrow angle, hence easily confused with noise.

We thus decided to let the user clean the tree T from spurious
branches, pruning it from the leaves, by means of a simple filter
that can be tuned interactively in real time. The filter is controlled
with a geometric parameter, which is independent of the specific
dataset and is very intuitive: the angle between gradients that ap-
proach the cut locus from opposite sides. For each leaf node y of
GC , we consider the gradients∇dx(yi) for all neighbors yi in the 1-
ring of y, we parallel transport such gradients to the tangent plane at
y, and we compute the maximum angle between any two of them. If
this angle is below a given threshold θ, then we prune y from T , and
we proceed recursively along the branch it belongs to. To parallel
transport vectors, we use the method proposed in [KCPS13].

Note that, by pushing threshold θ towards relatively large an-
gles, we may also remove the weaker branches of the cut locus,
where function dx is nearly differentiable, thus obtaining progres-
sively simpler cut loci (Fig. 7). This may be useful in a variety of
applications, since it is equivalent to consider a smoothed version
of the manifold, or of its distance function.

An alternative to the above filter consists of pruning the tree
based on a threshold on the value of the Laplacian. While the two
filters provide similar results, we privilege the one based on gradi-
ents because it is most intuitive and independent of the underlying
shape. However, in some cases the filter based on the Laplacian al-
lows the user to obtain better results. We therefore support switch-
ing between the two filters, or combining them.

Moreover, the filtering process can use two alternative policies:
one based on pruning, in which the leaves that exceed the threshold
are recursively removed; and the other based on growing, in which
the tree is expanded from the root, including nodes that fulfill the
given threshold. Pruning is more conservative, while growing is
more aggressive. Consider again the example in Fig. 5: both the

Figure 6: The cut locus has the same homology of the underly-
ing manifold. We use a field-aware variant of the tree cotree algo-
rithm [EW05] to transform the spanning tree into a system of loops,
always guaranteeing the correct topology. In the upper closeup, red
and blue lines denote the tree and cotree, respectively. Light green
edges are the homology generators. The bottom closeup shows a
detail of the output cut locus.

gradient and the Laplacian are “strong" only at the antipodal point
and at the tip of the bump. If pruning is applied, then the whole
ridge shown in the image would be retained; conversely, if growing
is applied, just the antipodal point would be retained, and the bump
would be deemed noise. The default policy, which has been applied
in most of our experiments, is the conservative one. However, with
models containing many tiny details, such as the ones in Fig. 13,
the aggressive strategy provides cleaner results.

In our experiments, we experienced the presence of spurious tiny
branches incident at the main ridges even after filtering. We provide
an additional filter, which can be used to remove short branches to
obtain clean paths. The filter can be tuned either based on the num-
ber of edges in a branch (for high resolution meshes, we found that
removing branches shorter than three edges is a reasonable choice
in all cases), or on the length of the branch relative to the size of the
object (for coarser meshes, removing branches shorter than 0.01 the
length of the diagonal of the bounding box is a reasonable choice).

The filtered tree TC provides our final approximation of the cut
locus for objects of genus zero.

4.2. Homology

If M has genus g > 0, we know that its cut locus must have the
same homology (Property P3), thus it must contain exactly 2g cy-
cles. To restore the correct homology, we employ a variation of the
greedy homotopy basis algorithm proposed in [EW05]. The origi-
nal algorithm finds the shortest homotopy basis centered at a mesh
vertex in O(n logn), by first growing a shortest spanning tree em-
anating from a source node, and then growing a spanning tree in
the dual mesh (a.k.a. cotree [Epp03]), covering the edges not in the
primal tree. This procedure leaves exactly 2g edges that are covered
neither by the primal nor by the dual trees. These edges are the gen-
erators of the homology basis, and – bridging disjoint branches in
the primal tree – form the wanted system of loops.

In our specific case, we are interested in finding the system of
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Figure 7: Increasing the threshold on the gradient angle, we obtain progressively simpler version of the cut locus, where "weak" branches
that are nearly differentiable are pruned. Pushing the threshold to the extreme, we retain only the point antipodal to the source (right).

loops that best aligns with the cut locus. To this end, we initialize
the tree with TC , and extend it so as to flood the entire mesh with a
new tree T̄ . Next, we set the root of the cotree C̄ at one of the trian-
gles incident to the source x, and we expand it across edges that do
not belong to the primal tree T̄ . Our goal is to position the homol-
ogy generators as close as possible to the cut locus. To do so, we
ensure that both the tree and the cotree grow at constant speed in all
directions, thus forcing opposite fronts of the trees to cover roughly
the same distance before they collide. We obtain the desired result
by prioritizing the growth of the tree T̄ with values of dx, and the
growth of the cotree C̄ with −dx (interpolating the function at the
centroid of each triangle). In most cases, the endpoints of a gener-
ator are already nodes of TC , and it is sufficient to add such edges
to the graph to close the loop (Figure 6). In case a generator e is
not connected to TC at its endpoints, we climb the branches of T̄
until we reach a node of TC , and we close the loop by adding the
corresponding paths to TC .

In the latter case, the portion of cut locus that closes the loop is
a subset of tree T̄ , hence misaligned with the valleys of the Lapla-
cian. We explain here why our choice to grow T̄ according to values
of dx not only does not sacrifice geometric accuracy, but rather en-
hances it. Remembering that the Laplacian ∆dx is the divergence
of the gradient∇dx, the previous step of the algorithm is extremely
effective at detecting strong branches of the cut locus, characterized
by strongly convergent gradients, but is less effective at detecting
weak branches, characterized by nearly parallel gradients. Weak
branches of the cut locus, which may have been missed in the pre-
vious step (e.g., due to aggressive thresholding), roughly align with
the local gradient, which provides a valid guidance for tracing them
(if a valid starting point in the cut locus is known).

Tree T̄ is initialized with the subset of the cut locus selected at
the previous step, and is then expanded according to growing values
of dx, hence aligning with ∇dx. As a whole, this hybrid tree aligns
to the valleys of the Laplacian where the gradients clearly converge,
and to the gradients where they are nearly parallel. This allows us
to have the best of both indicators, using each one of them in the
places where it is more appropriate. With this technique, we were
able to reconstruct high quality cut loci of shapes with non trivial
topology even operating with approximated distance functions, of-
ten characterized by less accurate Laplacian fields (Fig. 12). The

Figure 8: Construction for gradient-driven smoothing. We estimate
the discrete tangential normal tny of the cut locus at y. The dis-
placement vector is proportional to the component of the gradient
∇dx(y) along tny. Curve γ is a geodesic line cast from y in direction
sign(∇dx(y) · tny)tny for length λ|∇dx(y) · tny|.

result of this step is a graph GC providing a discrete approximation
of the cut locus.

4.3. Smoothing

Graph GC is made of edges of mesh M, thus it necessarily contains
wiggly paths. This approximation is suitable to many applications,
e.g., if we want to prevent any computational technique from cross-
ing the cut locus. However, we know that the cut locus of a smooth
manifoldM consists of smooth lines (Property P4). We try to ob-
tain a smoother (yet still piecewise-linear) structure by pushing the
nodes of GC closer to the true cut locus, freeing them from the
edges of M, while remaining on its surface.

We apply a tangent space smoothing algorithm driven by gradi-
ent ∇dx. We know that the gradient of dx is oriented towards the
cut locus from both sides of it (Fig. 2); since we actually estimate
the gradient of the smooth barrier ∇d̃x, we expect its component
orthogonal to the cut locus to be null at the cut locus. Thus, we it-
eratively displace each node y of GC in the direction of the normal
to the curve through y in its tangent plane, for an amount that de-
pends on the component of ∇d̃x(y) along such normal, until such
component becomes null. Note that, a displaced node y is no longer
a vertex of M, but it lies inside a triangle ty of M, and it is encoded
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with barycentric coordinates wrt ty; we estimate the gradient at y
by linearly interpolating the gradients at the vertices of ty, paral-
lel transported at y. Consecutive nodes are connected with shortest
geodesic paths to obtain the final cut locus.

Refer to Fig. 8 for a visual explanation of the smoothing step.
Let yp,y,yn be three consecutive nodes of GC , y being a regular
node. We first estimate the normal of the 3D curve through yp,y,yn
with standard finite differences, as in [LBS05], then we project such
vector to the tangent plane at y to recover the tangential normal tny.
We displace y by casting a geodesic path from y in tangent direction
tny for a length λ`(∇dx(y) · tny) where λ is a damping parameter,
which is initialized at 0.5 and halved at each iteration, and ` is the
average edge length. Note that the sign of the dot product may re-
verse the direction of tny according to the component of the gradi-
ent along it. Note also that the geodesic path will hardly cross more
than one edge per iteration, while it provides a safe way to follow
the intrinsic metric.

For a leaf node yl the algorithm is analogous, just the displace-
ment of yl occurs in the opposite direction wrt the parallel transport
of the normal at its neighbor. A branching node yb is simply dis-
placed tangentially towards the centroid if its neighbors on GC , as
the gradient estimated at branching points is usually not reliable.

The proposed approach readily pushes the discrete cut locus to
the smooth cut locus in areas where the former has a non vanishing
angle with the local gradient ∇dx(y). Extremely weak portions of
the cut locus are less affected, because the tangent curve and the
local gradient are nearly parallel. We eventually apply one step of
classical tangent space smoothing to relax these areas, too.

5. Results

We have implemented our algorithm in C++, using libraries
Yocto/GL [PNC19], CinoLib [Liv19] and libigl [JP∗18] for geom-
etry processing. We have validated our results in a variety of exper-
iments reported in this section. The method performs efficiently on
meshes with a size up to a few million triangles, and demonstrates
to produce plausible results on all models, correctly locating the
cut locus even in places where the distance function seems rather
smooth at a visual analysis (see, e.g., Fig. 6 and Fig. 11).

Validation. From a topological standpoint, our method is always
guaranteed to produce the correct result, meaning that the cut locus
has the same homology of the underlying manifold. From a geo-
metric point of view, the algorithm has a strong theoretical founda-
tion in the continuous, but in practice it relies on a discretization of
the Laplace-Beltrami operator, and on heuristics to build the con-
nectivity of the cut locus. Therefore, we cannot guarantee the ex-
act location of the cut locus on the manifold. In Figures 9 and 10,
we validate the geometric accuracy of our algorithm by comparing
our outputs with the ground truth on a torus [GMST05], and with
the output of prior approximated methods, which are guaranteed to
converge to the exact solution [DL09, Gén20]. We obtain visually
indistinguishable results on the torus, and a very similar result on
the kitten. For the latter, based on our understanding and practical
experience, we ascribe the tiny differences in the actual paths to the
different mesh tessellations.

Figure 9: Visual comparison with the analytic cut loci showed
in [GMST05] (top), and with the numerical method described
in [Gén20] (bottom). We manually tried to replicate the same
sources, obtaining visually indistinguishable results. For the com-
parison with [Gén20], both his mesh and ours contain 100K tri-
angles. We computed our cut locus in less than one second. Our
competitor is based on a convoluted numerical FEM scheme, which
requires 17 Gauss quadrature points per element. The author de-
clares that the computation terminated in less than 1 hour.

Figure 10: Visual comparison with the method proposed in [DL09]
(left). We manually pinpointed the source on a different mesh. The
mesh used in [DL09] contains about 60K triangles and the com-
putation takes about 12 seconds, while our model contains 250K
triangles and computation takes about 3 seconds. Reported times
in [DL09] are about ten minutes for other meshes of size compara-
ble to ours.

Scalability and performances. We experimented our method on
a variety of meshes, ranging from about 100K to about 2M tri-
angles. High-resolution meshes for all models have been obtained
with isotropic remeshing in Meshlab [CCC∗08], to warrant a stable
estimation of differential properties. All experiments are executed
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Figure 11: Mesh resolution may impact the result of our algorithm.
In the denser mesh, the Laplacian field (left closeup) clearly identi-
fies a weak path. In the coarse mesh the same path is more blurred.
Since that portion belongs to a closed loop, our topological step
correctly reconstructs it, but if the same path was open, it would
have been difficult to retain it because the gradients are almost
parallel, as the level sets of the distance function suggest.

on a laptop equipped with a 2.9 Ghz quad-core Intel Core i7 and
16 GB RAM, running on a single core. Table 1 reports running
times for the various phases of the method. Considering time for
pre-processing (once per mesh) and computation of the distance
function (once per source point, possible with three different meth-
ods), on large meshes our method runs at least two and up to three
orders of magnitude faster than any other competitor. The time for
the part due to our contribution (i.e., excluding the computation of
the distance function) is interactive, and several orders of magni-
tude faster. Note that this is relevant because, while the other meth-
ods require to run the algorithm again from the beginning each
time the parameters are changed, we can do parameter tuning in-
teractively after the time consuming part (i.e., computation of the
distance function) is complete.

Impact of mesh resolution. As any other technique that approxi-
mates continuous entities with a finite discretization, our method
performs best on dense and regular samplings. In particular, in
our experiments we noticed that even though theory ensures that
the Laplacian goes to −∞ at the cut locus, the discrete Laplace-
Beltrami may yield values near to zero where the local gradients
are almost parallel, hence the cut locus is very weak. In Figure 11
we show a typical failure case. Notwithstanding the feeble signal in
the Laplacian, our method was able to reconstruct the correspond-
ing loop and enforce the correct topology. Similar issues that arise
outside closed loops cannot be recovered. Considering the compu-
tational efficiency of our method, the easiest way to overcome these
issues is to operate on dense meshes.

Impact of distance computation. We have experimented with
three different methods for computing the distance function: VTP
[QHY∗16], which provides an efficient variant of the original
MMP algorithm [MMP87]; the heat method [CWW13]; and a sim-

Figure 12: Cut loci computed with two approximated methods (the
heat method [CWW13] and a graph solver [NPP20]), and an exact
polyhedral method (VTP [QHY∗16]). We show the distance func-
tion with the output (top), and its Laplacian (bottom). The exact
method produces fields that clearly demarcate the branches of the
cut locus. With approximated methods, noise occasionally blurs the
Laplacian around the branches of the cut locus.

ple graph-based solver [NPP20]. VTP requires no pre-processing,
and provides an exact solution in the polyhedral metric, but it is
rather slow on large meshes. The heat method requires solving a
linear system of the same size of the mesh. The matrix can be
pre-factorized once per mesh, and the solution after factorization
amounts to a matrix vector multiplication, hence it is quite fast.
It provides an approximated estimate of the distance function for
an underlying smooth manifold, and converges to the exact solu-
tion as a parameter t tends to zero. We used the implementation
in [JP∗18] with the default parameter, as recommended by the au-
thors [CWW13]. The graph-based solver relies on a graph with one
node per vertex, and one arc for each edge and dual edge of the in-
put mesh. The graph is built during pre-processing, and a solve con-
sists of a Dijkstra-like visit, which is quite fast, too. We have used
the implementation in [PNC19]. Compared with the exact polyhe-
dral solution, the accuracies of the heat method and of the graph
solver are similar, but with different artifacts, as discussed below.

All images in the paper, except Fig. 12, were generated by us-
ing VTP. In Fig. 12, we compare results obtained with the three
methods on two objects. We were able to successfully compute the
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Pre-processing Distance function Cut locus computation Total
model triangles genus min-max VTP heat graph spanning tree homology min-max
torus 100K 1 1.13 - 2.78 0.78 0.03 0.01 0.06 0.10 0.17 - 0.95
diamond 160K 0 1.86 - 5.46 3.11 0.06 0.01 0.12 – 0.13 - 3.23
block 170K 0 1.90 - 5.62 3.20 0.06 0.01 0.13 – 0.14 - 3.33
2-torus 200K 2 2.35 - 6.41 2.55 0.07 0.01 0.16 0.21 0.38 - 2.91
3-torus 200K 3 2.17 - 6.84 2.29 0.07 0.01 0.14 0.19 0.33 - 2.88
raindeer 200K 0 2.45 - 5.08 1.92 0.06 0.02 0.18 – 0.20 - 2.10
sphere 240K 0 2.82 - 10.04 5.64 0.10 0.02 0.22 – 0.24 - 5.86
kitten 250K 1 2.70 - 7.73 2.67 0.09 0.02 0.18 0.24 0.44 - 3.09
nefertiti 460K 0 5.37 - 17.77 3.97 0.19 0.04 0.42 – 0.46 - 4.39
bunny 500K 0 5.52 - 19.45 8.16 0.19 0.04 0.39 – 0.43 - 8.55
fertility 500K 4 5.55 - 19.21 7.92 0.20 0.04 0.41 0.50 0.95 - 8.83
pyramid 660K 0 8.46 - 38.24 11.64 0.30 0.08 0.73 – 0.81 - 13.45
bust 700K 0 9.18 - 39.89 10.65 0.32 0.09 0.78 – 0.87 - 11.43
octopus 800K 0 9.93 - 28.10 14.42 0.31 0.09 0.87 – 0.95 - 15.29
basket 1.1M 260 13.94 - 97.98 13.87 0.62 0.12 1.18 1.36 2.66 - 16.41
fertility 2.0M 4 22.92 - 173.68 66.09 2.99 0.20 1.81 2.10 4.11 - 70.00

Table 1: Statistics on models used in the experiments and related running times in seconds. Preprocessing includes times for: evaluating
metric tensors and related vectors for differential computations; pre-factorization in case the heat method is used; construction of the graph
in case the graph method is used (the latter is one order of magnitude smaller than the rest). Spanning tree computation includes also the
thinning filter. The total time depends heavily on the method used for the distance function (min with graph, max with VTP) and does not
include pre-processing times; graph achieves minimum times even including pre-processing; while heat becomes the most expensive for large
meshes because of the cost of pre-factoring. Applying a filter upon parameter tuning works in real time, taking less than 0.01 seconds on all
models, and it is not included in the table.

cut locus with all three methods. Nevertheless, we could observe
some interesting differences between the alternative approaches,
especially in terms of the Laplacian they yield. VTP consistently
produces a neat Laplacian that is completely free from noise. The
paths of the cut locus are very sharp and easy to identify. The graph
based approach produces a Laplacian with biased noise, where the
propagation paths can be clearly identified. Apart from that, the
paths of the cut locus remain sharp and easy to identify. On the posi-
tive side, the noise-level stripes produced by this method turn out to
be useful to trace the weak branches of the cut locus, because they
align with the gradient of the function. The heat method was the
most challenging for us because, by solving a Poisson problem, it
generates a function that is smooth everywhere, cut locus included.
This results in a blurred Laplacian field, where strong branches of
the cut locus are still clearly identified, but weaker ones fade away
(e.g. the three green paths in the upper part of the diamond), or com-
pletely disappear (e.g. the closure of the inner loops in the double
torus). As a result, the paths of the cut locus computed with the heat
method tend to slightly misalign from the other methods, albeit the
result is still acceptable for most applications.

In terms of speed, we report timings in Table 1. The cost of
VTP is dominant over all other phases of our algorithm. The heat
method and the graph solver are quite fast (after pre-processing);
the graph method scales better on large meshes, though, in terms of
both pre-processing and solve times. All in all, for non time critical
applications where quality dominates timing, VTP is by far the best
solution. On the other hand, the graph based approach provides a
good balancing between accuracy and running times, also proving
to scale better than the other methods on meshes containing mil-
lions of elements.

Impact of filtering. The interactive filter described in Sec. 4.1
ranks each edge of the ORG spanning tree according to the angle
formed by the gradients of the distance function at its two sides. For

Figure 13: Our method can cope with complex shapes with small
details and a rough surface, too. In these cases, it may be necessary
to tweak the filter to a higher threshold in order to remove spurious
branches and obtain a clean cut locus.

free branches, this is a quite reliable estimate of their “strength" in
the cut locus, namely of whether or not they are caused by relevant
features of the model, or just by noise. However, even important
branches may fade into regions with nearly parallel gradients.

The reconstruction of homology loops is quite robust and in-
dependent of filtering. We consistently experienced correct recon-
structions even if parts of the loops were filtered out before the ho-
mology part is performed. On the contrary, weak free branches are
quite unstable and may need to be recovered by tweaking the filter
properly. The exact position of terminal points of such branches,
which are all conjugate points in the exact cut locus, are hard to
detect. Therefore, the length of such branches is necessarily ap-
proximated. This is especially evident for rough surfaces contain-
ing many small details, as the ones depicted in Fig. 13.

Meshes with open boundaries. Our current implementation sup-
ports watertight meshes only. In principle, its extension to meshes
with open boundaries is straightforward. Of course, the methods
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Figure 14: Given a mesh and a point of view (yellow dot), cutting the mesh along the cut locus positions texture seams furthest from it,
making discontinuities least visible. We provide three alternative examples on complex shapes containing elongated structures. UV maps
(shown in the middle insets) were computed with ARAP [LZX∗08].

for computing the distance field must support meshes of this kind;
and some shortest paths would contain boundary edges and not be
geodesics in a geometric sense. In terms of the algorithm, the point
furthest from the source is no longer guaranteed to belong to the cut
locus, if it lies on the boundary. In that case, the root of the ORG
spanning tree could be set at the point with the lowest Laplacian,
which is the best guess in this scenario. Besides these tiny details,
perhaps the most critical issue concerns the reliable estimate of the
Laplacian field. As already observed for differential quantities of
the first order, the absence of a complete neighborhood for bound-
ary points makes the estimate of gradients unreliable [MLP19]. We
expect the estimate of second order differential quantities to be even
worse, possibly affecting the efficacy of our method. Thus, special
care would be needed to process boundary points.

5.1. Applications

Being a fundamental descriptor of a distance function living on a
surface manifold, the cut locus lends itself to a variety of alterna-
tive uses. While demonstrating them all is outside of the scope of
this paper, in this section we showcase two practical applications
involving the cut locus, in the context of global and local surface
parameterization.

POV-aware texture mapping. In texture mapping, objects that
are not topological disks must be cut open prior being flattened
to the plane. Cuts introduce discontinuities in the map, and often
accumulate distortion, resulting in visual artifacts. Techniques for
texture mapping try to hide cuts in the least visible parts of the
surface, so that the weak spots of the map are not immediately
perceived [SH02]. To this end, the cut locus reveals itself to be a
practical tool. For objects that are largely observed from a known
viewpoint – e.g., for digital sculptures in a virtual museum, or for

Figure 15: Starting from a geodesic distance function emanating
from a single source, our method allows to precisely retrieve its
distance from the cut locus, thus defining the radius of the maximal
ball under which the exponential map is injective. This construction
is relevant for many techniques in machine learning and optimal
transport (Sec. 1).

objects for which a visual saliency map is known – one can initial-
ize a distance function that emanates from a specific point of inter-
est, and cut the mesh open through the cut locus of such function.
There are two nice consequences: (i) since the cut locus and the
manifold are homotopic, cutting through the cut locus will prov-
ably generate a topological disk, suitable to texture mapping; (ii)
since the cut locus maximizes the distance from the source, cuts
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Figure 16: Alternative cut loci computed with our method using
progressively finer meshes (rows) and wider angle thresholds θ

(colums). With enough filtering, our method recovers the cut lo-
cus correctly on all models. Short branches have been filtered and
smoothing have been applied to models in the last column only.

will be naturally hidden when the mesh is observed from the se-
lected viewpoint. We implemented an interactive tool that allows
the user to select a saliency point on a mesh, and automatically cuts
it at the cut locus of the distance function that emanates from it.
Fig. 14 shows a few results obtained with our tool.

Maximal injectivity disk. Methods that exploit a local parame-
terization of the surface typically rely on a heuristically computed
radius, under which the exponential map is supposed to remain in-
jective (Sec. 1). Considering its minimal computational overhead,
our method allows to enhance these methods, providing a precise
estimate of the maximum radius that verifies this assumption. The
check is pretty straightforward: considering a point x and the dis-
tance function dx emanating from it, the maximum radius rmax can
be computed as

rmax = argmin
p

dx(p) s.t. p ∈ C(x) .

Note that a disk having radius rmax centered at x will be tangent
to itself at the cut locus. In practice, one may want to consider a
slightly smaller radius r′ = rmax− ε, which guarantees the full in-
jectivity of the map. In Fig. 15 we show a few examples of nearly
maximal disks centered at different points of a manifold with com-
plex genus.

6. Limitations

Our method assumes a fairly accurate estimate of first and second
order differential quantities of the distance function. The discrete
methods discussed in Sec. 4.1 achieve this on meshes with high res-
olution and isotropic elements. Since our method is fast, we found
it easy to remesh unsatisfactory models prior processing.

On coarse meshes, our algorithm still reconstructs the cut locus
correctly, as long as the resolution is not too low and the mesh ele-
ments are slightly regular (Fig. 16). On coarse meshes, or when the
elements are poor, the weak branches of the cut locus are hard to
distinguish from noise. In that case, while the homology is always
recovered correctly, the geometry may become imprecise, some

(pruning) (growing) (pruning)
or

Figure 17: Cut loci computed on the Stanford bunny with its
original tessellation and filled holes (left) and a regular isotropic
remeshing of it (right), computed with Meshlab [CCC∗08]. Left:
because of the artifacts shown in the closeups in Fig. 18, the prun-
ing and the growing policies are not able to retain the cut locus and,
at the same time, filter the spurious branches of the spanning tree.
Right: on a regular mesh all versions of the filter perform equally
well.

max

min

Figure 18: Estimating the Laplacian on an irregular (left) and reg-
ular (right) meshing: a poor tessellation may break the valleys of
the Laplacian (discontinuous blue line) and introduce spurious lo-
cal minima. Both types of artifacts may hinder the action of our
filters, as exemplified in Fig. 17.

weak branches may be lost, and some spurious branches may be
retained. For instance, the Stanford bunny has a complicated cut lo-
cus with many free branches that are hard to detect (Fig. 17). On the
original mesh, the irregular tessellation may interrupt the valleys
of the Laplacian that demarcate the cut locus, or introduce bumps
along them, or spurious local minima (Fig. 18). Such a poor esti-
mation may cause some points to become either too strong, or too
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weak, thus hindering the action of filters. Note that the “strength”
of a branch depends on the location of the source, the geometry
of the shape, and the discretization. Therefore, in general it is not
possible to determine a priori which mesh density is suitable to de-
tect all branches. The pruning policy needs an aggressive threshold
to filter the branches ending at spurious local minima, also miss-
ing the weak branches of the cut locus (Fig. 17, left). On the other
hand, with the growing policy some branches of the cut locus are
truncated too soon, because of bumps and cracks along the valleys
of the Laplacian (Fig. 17, middle). On a regular tessellation, both
policies allow us computing an accurate estimate of the cut locus
with reasonable thresholds (Fig. 17, right).

We did not experiment with extreme cases characterized by very
sparse meshing and long and skinny elements, such as many of the
meshes found in the Thingi10k repository [ZJ16]. In that case, it
may be convenient to use intrinsic triangulations [SSC19a] and re-
lated differential estimators [SC20]. The rest of our method would
work unchanged, but it needs being implemented in the framework
of intrinsic triangulations.

7. Concluding remarks

We have presented a novel method to compute the cut locus that
is practical and fast. The method depends on a unique intuitive pa-
rameter that can be tuned interactively to filter out artifacts aris-
ing from small details of the surface, or from discretization. The
method works on surfaces of any genus, always recovering the
correct topology of the cut locus; it works on shapes with sharp
creases; and on rough shapes with many small details, too.

We conjecture that out method converges to the true cut locus
as the mesh becomes denser, but proving this fact requires fur-
ther work. In summary, all methods we adopted for computing the
distance field can be shown to converge to the true geodesic dis-
tance; and the method to compute the differential quantities also
converges for smooth functions. By applying such estimators to a
denser and denser mesh, the estimated Laplacian should converge
to the Laplacian of the distance function away from the cut locus,
and to the Laplacian of a smooth barrier function near the cut locus.
Thus, we expect that for any given value A < 0 there exist a mesh
dense enough that L(y) < A for all y at the cut locus. However,
since no bound from below to the Laplacian away of the cut locus
is known, in general the Laplacian alone is not sufficient to char-
acterize all and only the points of the cut locus. This fact further
motivates the additional criteria that we apply in our method.

We foresee two interesting avenues for future works. For the
computation of the cut locus, we plan to improve on our current
method to achieve a reliable fully automatic detection that works
well in all practical scenarios. The most challenging issue in this di-
rection is to determine where the weak free branches end. It would
also be interesting to exploit the boundary structure provided by
MMP-like algorithms, as in [LCT11]. Based on such structure, the
exact cut locus in the polyhedral metric can be computed. How-
ever, such a cut locus would consist of a dense tree, with one leaf
at each parabolic vertex, thus being useful only for strictly poly-
hedral objects without any curved surface. It is an open problem
how to define suitable pruning strategies to obtain a cut locus that
is descriptive for curved objects approximated with a mesh, too.

Finally, we plan to explore the capabilities of our approach for
the computation of the medial axis, which is a widely popular shape
descriptor used for shape compression, matching and skeletoniza-
tion [TDS∗16]. Indeed, the medial axis can be defined as the cut
locus of a distance field emanating from the boundaries of a geo-
metric domain, growing inwards. Despite in this work we focused
our attention on distance fields emanating from a single (point-like)
source, in his work Générau showed that the Laplacian goes to−∞
also for distance fields emanating from a general hypersurface em-
bedded in the manifold domain [Gén20], creating a connection with
the λ-medial axis [CL05]. In its current state, our algorithm is not
able to reconstruct a proper connectivity for this more general case,
but since the theoretical foundation still holds, it would be inter-
esting to work at different tools to filter the Laplacian field and
generate the medial connectivity, both for 2D and 3D manifolds.
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